中文
Announcement
More
Progress in Chemistry 2019, Vol. 31 Issue (4): 536-549 DOI: 10.7536/PC180933 Previous Articles   Next Articles

Colorimetric and Fluorogenic Chemosensors for Mercury Ion Based on Nanomaterials

Yang Shen1, Jiwen Hu2, Tingting Liu1, Hongwen Gao1,**(), Zhangjun Hu2,**()   

  1. 1. College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
    2. College of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
  • Received: Online: Published:
  • Contact: Hongwen Gao, Zhangjun Hu
  • About author:
    ** E-mail:(Hongwen Gao)
    ** E-mail:(Zhangjun Hu)
  • Supported by:
    National Natural Science Foundation of China(21577098); Shanghai Natural Science Foundation(17ZR1410500)
Richhtml ( 11 ) PDF ( 880 ) Cited
Export

EndNote

Ris

BibTeX

Mercury ion(Hg2+) is one of the most toxic heavy metals that has severe adverse effects on the environment and humans. Therefore, more and more attention has been paid to developing analytical approaches for the rapid detection of Hg2+. Nanomaterials are widely used for Hg2+ detection due to their potential optical advantages and stability. The nanosensors for Hg2+in recent years are highlighted in this review. According to the composition of nanomaterials, these sensors can be divided into nanosensors based on gold, silver, carbon and silicon nanomaterials, quantum dots, organic nanoparticles and other nanomaterials. These nanosensors are described and discussed respectively in terms of design principle, identification performance and practical application. Finally, the research prospect in this field is presented.

Fig. 1 Schematic illustration for the sensing mechanism of Hg2+ sensor based on AuNPs[32]. Copyright 2018, Elsevier.
Fig. 2 Schematic illustration for the sensing mechanism of Hg2+ sensor based on AuNPs[34]
Fig. 3 Schematic illustration for the sensing mechanism of Hg2+ sensor based on AuNCs[40]. Copyright 2018, Elsevier.
Fig. 4 Schematic illustration for the sensing mechanism of Hg2+ sensor based on AuNCs[41]
Fig. 5 Schematic illustration for the sensing mechanism of Hg2+ sensor based on AuNCs[42]
Fig. 6 Schematic illustration for the sensing mechanism of Hg2+ sensor based on AgNPs[51]
Fig. 7 Schematic illustration for the sensing mechanism of Hg2+ sensor based on AgNCs[53]
Fig. 8 Schematic illustration for the sensing mechanism of Hg2+ sensor based on CH3NH3PbBr3 QDs[61].Copyright 2018, Elsevier.
Fig. 9 Schematic illustration for the sensing mechanism of Hg2+ sensor based on ZnSe QDs[62]
Fig. 10 Schematic illustration for the sensing mechanism of Hg2+ sensor based on CdTe QDs[63]. Copyright 2018, Elsevier.
Fig. 11 Schematic illustration for the sensing mechanism of Hg2+ sensor based on CQDs[69]
Fig. 12 Schematic illustration for the sensing mechanism of Hg2+ sensor based on Cyt-dot[70]
Fig. 13 Schematic illustration for the sensing mechanism of Hg2+ sensor based on CDs[71]
Fig. 14 Schematic illustration for the sensing mechanism of Hg2+ sensor based on CDs[72]
Fig. 15 Schematic illustration for the sensing mechanism of Hg2+ sensor based on CDs[74]. Copyright 2018, Elsevier.
Fig. 16 Schematic illustration for the sensing mechanism of Hg2+ sensor based on rGO[75]
Fig. 17 Schematic illustration for the sensing mechanism of Hg2+ sensor based on organic nanoparticles[91]
Fig. 18 Schematic illustration for the sensing mechanism of Hg2+ sensor based on Fe3O4 nanoparticles[102]. Copyright 2018, Elsevier.
Fig. 19 Schematic illustration for the sensing mechanism of Hg2+ sensor based on TiO2 nanomaterial[105]
[1]
Li S, Li Y, Cao J, Zhu J, Fan L, Li X . Anal.Chem., 2014,86(20):10201.
[2]
Ran X, Sun H, Pu F, Ren J Qu X. Chem.Commun., 2013,49(11):1079.
[3]
Frost M S, Dempsey M J, Whitehead D E . Sens. Actuators B Chem., 2015,221:1003.
[4]
Momidi B K, Tekuri V, Trivedi D R . Spectrochim.Acta Part A, 2017,180:175.
[5]
Zhang L, Peng D, Liang R P, Qiu J D . TrAC,Trends Anal. Chem., 2018,102:280.
[6]
Bin J W, Yap S H K, Panwar N, Zhang L L, Lin B, Yong K T, Tjin S C, Ng W J, Majid M B. . Sens. Actuators B, 2016,237:142.
[7]
Cui L, Wu J ,Ju H X . Biosens. Bioelectron, 2015,63:276.
[8]
Tsekenis G, Filippidou M K, Chatzipetrou M, Tsouti V, Zergioti I, Chatzandroulis S . Sens. Actuators B, 2015,208:628.
[9]
Holmes P , James K A F, LevyL S . Sci. Total Environ., 2009,408(2):171.
[10]
Tchounwou P B, Ayensu W K, Ninashvili N, Sutton D. Environ.Toxicol ., 2003,18:149.
[11]
Ruiz-de-Cenzano M, Rochina-Marco A, Cervera M L, de la Guardia M . Environ. Saf., 2014,107:90.
[12]
Chen B B, Heng S J, Peng H Y, Hu B, Yu X, Zhang Z L, Pang D W, Yue X, Zhu Y . Anal. At. Spectrom., 2010,25:1931.
[13]
Aranda P R, Gil R A , Moyano S, de Vito I, Martinez L D. Hazard. Mater., 2009,161:1399. https://www.ncbi.nlm.nih.gov/pubmed/18572311

doi: 10.1016/j.jhazmat.2008.04.129 pmid: 18572311
[14]
Rahman G M, Wolle M M, Fahrenholz T, Kingston H M, Pamuku M . Anal. Chem 2014,86(12):6130.
[15]
Wang N, Lin M, Dai H X ,Ma H Y. Biosens. Bioelectron, 2016,79:320.
[16]
Ding Y J, Wang S S, Li J H, Chen L X . TrAC. Trends Anal. Chem., 2016,82:175.
[17]
Chen G Q, Guo Z, Zeng G M, Tang L . Analyst, 2015,140:5400.
[18]
田春霞(Tian C X) (理化检验(化学分册)(Physical Testing and Chemical Analysis(Part B: Chemical Analysis)), 2017,53(10):1234.
[19]
Huang K, Jiao X J, Liu C, Wang Q, Qiu X Y, Zheng D S, He S, Zhao L C, Zeng X S . Dyes and Pigments, 2017,142:437.
[20]
Jiao Y, Zhang L, Zhou P . Talanta, 2016,150:14.
[21]
Liu B X, Huang Y K, Zhu X, Hao Y Q, Ding Y J, Wei W, Wang Q, Qu P ,Xu M T. Anal. Chim. Acta, 2016,912:139.
[22]
Zhao W Q, Liu X L, Lv H T, Fu H, Yang Y, Huang Z P ,Han A X. Tetrahedron Lett, 2015,56:4293.
[23]
Xiao H D, Li J H, Wu K T, Yin G, Quan Y W, Wang R Y . Sens. Actuators B, 2015,213:343.
[24]
Ullah N, Mansha M, Khan I, Qurashi A . TrAC. Trends Anal. Chem., 2018,100:155.
[25]
Link S, EI-Sayed M A . J. Phys. Chem. B, 1999,103:4212.
[26]
Elghanian R, Storhoff J J, Mucic R C, Letsinger R L, Mirkin C A . Science, 1997,277:1078.
[27]
Chansuvarn W, Tuntulani T, Imyim A . TrAC. Trends Anal. Chem., 2015,65:83.
[28]
Yeh Y C, Creran B, Rotello V M . Nanoscale, 2012,4:1871.
[29]
You C C, Chompoosor A, Rotello V M . Nano Today, 2007,2(3):34.
[30]
Xu X H, Li Y F, Zhao J T, Li Y Y, Lin J, Li B, Gao Y X, Chen C Y . Analyst, 2015,140:7841.
[31]
Zhang Z Y, Wang H, Chen Z P, Wang X Y, Choo J ,Chen L X. Biosens. Bioelectron, 2018,114:52.
[32]
Zohora N, Kumar D, Yazdani M, Rotello V M, Ramanathan R, Bansal V . ColloidsSurf. A, 2017,532:451.
[33]
Chansuvarn W, Tuntulani T, Imyim A . TrAC. Trends Anal. Chem., 2015,65:83.
[34]
Wang J, Fang X, Cui X, Zhang Y, Zhao H, Li X, He Y . Talanta, 2018,188:266.
[35]
Farzin L, Shamsipur M, Sheibani S . Talanta, 2017,174:619.
[36]
Wang L, Liu F Y, Sui N, Liu M H, Yu W W . Mikrochim. Acta, 2016,183:2855.
[37]
Yu T, Zhang T T, Zhao W, Xu J J, Chen H Y . Talanta, 2017,165:570.
[38]
Wang X Y, Yu J L, Wu X Q, Fu J Q, Kang Q, Shen D Z, Li J H ,Chen L X. Biosens. Bioelectron, 2016,81:438.
[39]
Zhao P, He K Y, Han Y T, Zhang Z, Yu M Z, Wang H H, Huang Y, Nie Z ,Yao S Z. Anal. Chem, 2015,87:9998.
[40]
Deng W, Dai R, Hu P, Li Q, Xiong X, Huang K, Huo F . Microchem. J 2018,141:163.
[41]
Liu W, Wang X, Wang Y, Li J, Shen D, Kang Q, Chen L . Sens. Actuators B, 2018,262:810.
[42]
Wang J, Ma S, Ren J, Yang J, Qu Y, Ding D, Zhang M, Yang G . Sens.Actuators B, 2018,267:342.
[43]
Li K, Wang K, Qin W W, Deng S H, Li D, Shi J Y, Huang Q, Fan C H . Am. Chem. Soc., 2015,137:4292. https://www.ncbi.nlm.nih.gov/pubmed/25816173

doi: 10.1021/jacs.5b00324 pmid: 25816173
[44]
Lu C, Liu X J, Li Y F, Yu F, Tang L H, Hu Y J ,Ying Y B. ACS Appl. Mat. Interfaces, 2015,7:15395.
[45]
Huang Y Q, Fu S, Wang Y S, Xue J H, Xiao X L, Chen S H, Zhou B . Anal. Biochem 2018,410:7385.
[46]
Zhu Q, Li L, Mu L, Zeng X, Redshaw C, Wei G . J. Photochem. Photobiol. A, 2016,328:217.
[47]
Liu Y, Deng Y, Dong H M, Liu K K ,He N Y. Sci. China Chem, 2016,60:329.
[48]
Walekar L S, Hu P, Vafaei M H, Long M . Spectrochim. Acta Part A, 2018,198:168.
[49]
Lou T T, Chen Z P, Wang Y Q ,Chen L X. ACS Appl. Mater. Interfaces, 2011,3:1568.
[50]
Sharma P, Mourya M, Choudhary D, Goswami M, Kundu I, Dobhal M P ,Tripathi C S P, Guin D Sens. Actuators B, 2018,268:310.
[51]
Rajamanikandan R ,Ilanchelian M. Mater. Today Commun, 2018,15:61.
[52]
Faham S, Ghavami R, Rasouli Z ,Khayatian G. Int. J. Environ. Anal. Chem, 2018,98:82.
[53]
Li C, Wei C . Sens. Actuators B, 2017,242:563.
[54]
Chen L, Fu X L, Lu W H ,Chen L X. ACS Appl. Mater. Interfaces, 2013,5:284.
[55]
Amirjani A, Haghshenas D F . Talanta, 2019,192:418.
[56]
Tan J, Guo M L, Tan L, Geng Y Y, Huang S Y, Tang Y W, Su C C, Lin C C, Liang Y . Sens. Actuators B, 2018,274:627.
[57]
Zhu J, Chang H, Li J J, Li X, Zhao J W . Spectrochim. Acta Part A, 2018,188:170.
[58]
傅骏青(Fu J Q), 王晓艳(Wang X Y), 李金花(Li J H), 陈令新(Chen L X) . 化学进展(Progress in Chemistry), 2016,28(01):83.
[59]
王欣然(Wang X R), 李博伟(Li B W), 尤慧艳(You H Y), 陈令新(Chen L X) . 分析化学(Chinese Journal of Analytical Chemistry), 2015,43(10):1499.
[60]
Qi J, Li B W, Wang X R, Zhang Z, Wang Z, Han J L, Chen L X . Sens. Actuators B, 2017,251:224.
[61]
Lu L Q, Tan T, Tian X K, Li Y, Deng P. Anal.Chim. Acta, 2017,986:109.
[62]
Zhou Z Q, Yan R, Zhao J, Yang L Y, Chen J L, Hu Y J, Jiang F L, Liu Y . Sens. Actuators B, 2018,254:8.
[63]
Ghasemi F , Hormozi-Nezhad M R, Mahmoudi M. Sens. Actuators B, 2018,259:894.
[64]
Pisanic T R, Zhang Y, Wang T H . Analyst, 2014,139:2968.
[65]
Chen G, Song F, Xiong X ,Peng X. Ind. Eng. Chem. Res., 2013,52:11228.
[66]
Yan F Y, Zou Y, Wang M, Mu X L, Yang N, Chen L . Sens. Actuators B, 2014,192:488.
[67]
Li H T, Ming H, Liu Y, Yu H, He X D, Huang H, Pan K M, Kang Z H ,Lee S T. New J. Chem., 2011,35:2666.
[68]
Shi W, Wang Q, Long Y, Cheng Z, Chen S, Zheng H, Huang Y . Chem. Commun 2011,47:6695.
[69]
Meng A, Xu Q, Zhao K, Li Z, Liang J, Li Q . Sens. Actuators B, 2018,255:657.
[70]
Luo L, Song T, Wang H, Yuan Q, Zhou S . Spectrochim. Acta Part A, 2018,193:95.
[71]
Yan F, Shi D, Zheng T, Yun K, Zhou X, Chen L . Sens. Actuators B, 2016,224:926.
[72]
Tabaraki R ,Sadeghinejad N. Ecotoxicol. Environ. Saf, 2018,153:101.
[73]
Patidar R, Rebary B, Bhadu G R, Paul P . Lumin., 2016,173:243.
[74]
Liang X C, Chen S, Gao J, Zhang H, Wang Y, Wang J H, Feng L . Sens. Actuators B, 2018,265:293.
[75]
Liu Y, Wang X, Wu H . Biosens. Bioelectron 2017,87:129.
[76]
Huang J H, Su X F ,Li Z G. Biosens. Bioelectron, 2017,96:127.
[77]
Huang P J, van Ballegooie C, Liu J . Analyst, 2016,141:3788.
[78]
Liu Z Y, Ding J ,Xue J M. New J. Chem., 2009,33(1):88.
[79]
Genovese D, Montalti M, Prodi L, Rampazzo E, Zaccheroni N, Tosic O, Altenhoner K, May F, Mattay J . Chem. Commun 2011,47(39):10975.
[80]
Zhu B, Ren G, Tang M, Chai F, Qu F, Wang C, Su Z . Dyes and Pigments, 2018,149:686.
[81]
LeCroy G E, Sonkar S K, Yang F, Veca L M, Wang P, Tackett K N, Yu J J, Vasile E, Qian H, Liu Y . ACS Nano, 2014,8:4522.
[82]
Wang H S, Wang C, He Y K, Xiao F N, Bao W J, Xia X H ,Zhou G J. Anal. Chem, 2014,86:3013.
[83]
Ding Y, Zhu W, Xu Y, Qian X . Sens. Actuators B, 2015,220:762.
[84]
Wang F, Gu Z, Lei W, Wang W, Xia X, Hao Q . Sens. Actuators B, 2014,190:516.
[85]
Guo X, Mao F, Wang W, Yang Y, Bai Z. ACS Appl . Mater. Interfaces, 2015,7:14983.
[86]
Yang H H, Zhang S Q, Chen X L, Zhuang Z X, Xu J G ,Wang X R. Anal. Chem, 2014,76:1316.
[87]
Hao R, Xing R, Xu Z, Hou Y, Gao S, Sun S . Adv. Mater 2010,22:2729.
[88]
Liu Z Y, Ding J ,Xue J M. New J. Chem., 2009(3):88.
[89]
Zeng X, Xu Y, Chen X, Ma W ,Zhou Y. Appl. Surf. Sci, 2017,423:1103.
[90]
Mir N, Heidari A, Beyzaei H, Mirkazehi-Rigi S ,Karimi P. Chem. Eng. J, 2017,327:648.
[91]
Wang H, Zhang P, Chen J, Li Y, Yu M, Long Y, Yi P . Sens. Actuators B, 2017,242:818.
[92]
Othman A B, Lee J W, Wu J S, Kim J S, Abidi R, Thuéry P ,Strub J M, van Dorsselaer A, Vicens J . Org. Chem., 2007,72:7634.
[93]
Dhir A, Bhalla V, Kumar M . Org. Lett 2008,10:4891.
[94]
Oguz M, Bhatti A A, Karakurt S, Aktas M, Yilmaz M . Spectrochim. Acta Part A, 2017,171:340.
[95]
Bhatti A A, Oguz M ,Yilmaz M. Appl. Surf. Sci, 2018,434:1217.
[96]
Tang Y, Yang S, Zhang N, Zhang J . Cellulose, 2014,21:335.
[97]
Sacui I A, Nieuwendaal R C, Burnett D J, Stranick S J, Jorfi M, Weder C, Foster E J, Olsson R T ,Gilman J W. ACS Appl Mater. Interfaces, 2014,6:6127.
[98]
Eyley S, Thielemans W . Nanoscale, 2014,6:7764.
[99]
Chen J D, Zhou Z X, Chen Z X, Yuan W Z ,Li M Q. New J Chem., 2017,41:10272.
[100]
Shamsipur M, Sadeghi M, Beyzavi M H ,Sharghi H. Mater. Sci. Eng. C, 2015,48:424.
[101]
Wang Y, Wu F . Polymer, 2015,56:223.
[102]
Lv X, Wu W, Niu C, Huang D, Wang X, Zhang X . Talanta, 2016,151:62.
[103]
Palomares E, Vilar R ,Durrant J R . Chem. Commun, 2004,4:362.
[104]
Nazeeruddin M K, Censo D D, Humphry-Baker R ,Grtzel M . Adv. Funct. Mater, 2006,16:189.
[105]
Shahat A, Ali E A ,l Shahat M F. Sens.Actuators B, 2015,221:1027.
[106]
Zhang H, Xia Y S . ACS Sensors, 2016,1:384.
[107]
Li S P, Lai J P, Qi L M, Saqib M, Majeed S, Tong Y J, Xu G B . Analyst, 2016,141:2362.
[108]
Chen L, Li J H ,Chen L X. ACS Appl Mater. Interfaces, 2014,6:15897.
[109]
Chen J L, Yang P C, Wu T, Lin Y W . Spectrochim. Acta Part A, 2018,199:301.
[110]
Yang Q, Li J H, Wang X Y, Peng H L, Xiong H ,Chen L X. Biosens. Bioelectron, 2018,112:54.
[111]
贾梦凡(Jia M F), 张忠(Zhang Z), 杨兴斌(Yang X B), 李金花(Li J H) 陈令新(Chen L X). 中国科学:化学(ientia Sinica(Chimica)), 2017,47(03):300.
[112]
Guo Z Y, Duan J, Yang F, Li M, Hao T T, Wang S, Wei D Y . Talanta, 2012,93:49.
[113]
Duan J ,Guo Z Y. Chinese Chem. Lett., 2012,23:225.
[1] Gehui Chen, Nan Ma, Shuaibing Yu, Jiao Wang, Jinming Kong, Xueji Zhang. Immunity and Aptamer Biosensors for Cocaine Detection [J]. Progress in Chemistry, 2023, 35(5): 757-770.
[2] Yan Bao, Jiachen Xu, Ruyue Guo, Jianzhong Ma. High-Sensitivity Flexible Pressure Sensor Based on Micro-Nano Structure [J]. Progress in Chemistry, 2023, 35(5): 709-720.
[3] Jinglong Zhao, Wenfeng Shen, Dawu Lv, Jiaqi Yin, Tongxiang Liang, Weijie Song. Gas-Sensing Technology for Human Breath Detection [J]. Progress in Chemistry, 2023, 35(2): 302-317.
[4] Yanyu Zhong, Zhengyun Wang, Hongfang Liu. Progress in Electrochemical Sensing of Ascorbic Acid [J]. Progress in Chemistry, 2023, 35(2): 219-232.
[5] Lan Yu, Peiran Xue, Huanhuan Li, Ye Tao, Runfeng Chen, Wei Huang. Circularly Polarized Thermally Activated Delayed Fluorescence Materials and Their Applications in Organic Light-Emitting Devices [J]. Progress in Chemistry, 2022, 34(9): 1996-2011.
[6] Keqing Wang, Huimin Xue, Chenchen Qin, Wei Cui. Controllable Assembly of Diphenylalanine Dipeptide Micro/Nano Structure Assemblies and Their Applications [J]. Progress in Chemistry, 2022, 34(9): 1882-1895.
[7] Jiyang Lu, Tiantian Wang, Xiangxiang Li, Fuming Wu, Hui Yang, Wenping Hu. Flexible Sensors Based on Electrohydrodynamic Jet Printing [J]. Progress in Chemistry, 2022, 34(9): 1982-1995.
[8] Yiling Tan, Shichun Li, Xi Yang, Bo Jin, Jie Sun. Strategies of Improving Anti-Humidity Performance for Metal Oxide Semiconductors Gas-Sensitive Materials [J]. Progress in Chemistry, 2022, 34(8): 1784-1795.
[9] Jin Zhou, Pengpeng Chen. Modification of 2D Nanomaterials and Their Applications in Environment Pollution Treatment [J]. Progress in Chemistry, 2022, 34(6): 1414-1430.
[10] Yaoyu Qiao, Xuehui Zhang, Xiaozhu Zhao, Chao Li, Naipu He. Preparation and Application of Graphene/Metal-Organic Frameworks Composites [J]. Progress in Chemistry, 2022, 34(5): 1181-1190.
[11] Hongji Jiang, Meili Wang, Zhiwei Lu, Shanghui Ye, Xiaochen Dong. Graphene-Based Artificial Intelligence Flexible Sensors [J]. Progress in Chemistry, 2022, 34(5): 1166-1180.
[12] Yu Lin, Xuecai Tan, Yeyu Wu, Fucun Wei, Jiawen Wu, Panpan Ou. Two-Dimensional Nanomaterial g-C3N4 in Application of Electrochemiluminescence [J]. Progress in Chemistry, 2022, 34(4): 898-908.
[13] Hui Zhao, Wenbo Hu, Quli Fan. Two-Photon Fluorescence Probe in Bio-Sensor [J]. Progress in Chemistry, 2022, 34(4): 815-823.
[14] Hao Tian, Zimu Li, Changzheng Wang, Ping Xu, Shoufang Xu. Construction and Application of Molecularly Imprinted Fluorescence Sensor [J]. Progress in Chemistry, 2022, 34(3): 593-608.
[15] Tingting Zhang, Xingzhi Hong, Hui Gao, Ying Ren, Jianfeng Jia, Haishun Wu. Thermally Activated Delayed Fluorescence Materials Based on Copper Metal-Organic Complexes [J]. Progress in Chemistry, 2022, 34(2): 411-433.