中文
Announcement
More
Progress in Chemistry 2019, Vol. 31 Issue (5): 681-689 DOI: 10.7536/PC180930 Previous Articles   Next Articles

Synthesis and Application of Guanidine-Based Antibacterial Polymers

Hao Zhang1,2, Jing Liu1,2, Kun Cui1, Tao Jiang2*,**(), Zhi Ma1,**()   

  1. 1. Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
    2. College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin 300457, China
  • Received: Online: Published:
  • Contact: Tao Jiang, Zhi Ma
  • About author:
    ** E-mail: (Zhi Ma);
  • Supported by:
    National Natural Science Foundation of China(21374130); National Natural Science Foundation of China(21074146); Opening Project of Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Chinese Academy of Sciences(K2018-5)
Richhtml ( 84 ) PDF ( 2844 ) Cited
Export

EndNote

Ris

BibTeX

Exploition of novel antibacterial agents that contact non-specifically with bacteria is one of the solutions to the problem of bacterial infection. Firstly, guanidine-based antibacterial polymers having prolonged, broad-spectrum, high-efficiency antibacterial properties, without eukaryotic cytotoxicity, and making it difficult for bacteria to develop resistance are introduced briefly. Then, the antibacterial mechanism of non-specific electrostatic attraction with bacteria is reviewed. In addition, the design, synthesis, and antimicrobial property of the main-chained guanidine-based antibacterial polymers, side-chained guanidine-based antibacterial polymers, and surface-grafted guanidine-based antibacterial polymers are described in detail. Finally, the future development of controllable synthetic strategy and practical application of the novel guanidine-based antibacterial polymers are prospected.

Fig. 1 Molecular formulas of arginine and lysine
Fig. 2 Schematic diagram of the combination of guanidine-based polymer and bacterial cytomembrane[30]
Fig. 3 Synthesis of PHMG and PHMB[37, 38]
Fig. 4 Seven types of molecular structures in the PHMG[39, 40]
Fig. 5 Synthesis of PHMG-PAAm hydrogel[47]
Fig. 6 Synthesis of the amphiphilic and antibacterial block copolymer PHMG-PPGDE[48]
Fig. 7 Synthetic process of guanidinylated chitosan under microwave irradiation[49]
Fig. 8 Synthesis of GPHMG[8]
Fig. 9 Synthesis of guanidine-functionalized norbornene monomer and its homopolymer[50]
Fig. 10 Synthesis of 3-guanidinopropyl methacrylamide(GPMA) and subsequent RAFT polymerization in water to prepare PGPMA homopolymers(a) and PGPMA-b-PHPMA block copolymers(b) and P(GPMA-co-APMA) copolymers(c)[24, 51]
Fig. 11 Synthesis of MAGH, PMAGH and PMAGH-b-PS-b-PMAGH[52]
Fig. 12 Two synthetic strategies for tetramethylhydrazine functionalized polyurethanes[53]
Fig. 13 Synthesis of AGG homopolymers, copolymers and their derivatives[54, 56]
Fig. 14 Synthesis of guanidine-based polymers via the transformation of amino groups on the side chain[18, 19]
Fig. 15 Preparation of PHMG-grafted PSGMA microspheres[58]
Fig. 16 Surface modification procedure of polypropylene wound dressing[59]
Fig. 17 Synthesis of the PHMG-grafted PVC[60]
Fig. 18 Preparation of guanidine and amidoxime cofunctionalized polypropylene nonwoven fabric[61]
[1]
Fernandes P . Nat. Biotechnol., 2006,24:1497. https://www.ncbi.nlm.nih.gov/pubmed/17160049

doi: 10.1038/nbt1206-1497 pmid: 17160049
[2]
Fischbach M A, Walsh C T . Science, 2009,325:1089. https://www.ncbi.nlm.nih.gov/pubmed/19713519

doi: 10.1126/science.1176667 pmid: 19713519
[3]
McDonnell G, Russell A D . Clin. Microbiol. Rev., 2001,14:227.
[4]
Levy S B, Marshall B . Nat. Med., 2004,10:S122. https://www.ncbi.nlm.nih.gov/pubmed/15577930

doi: 10.1038/nm1145 pmid: 15577930
[5]
Nathan C . Nature, 2004,431:899. https://www.ncbi.nlm.nih.gov/pubmed/15496893

doi: 10.1038/431899a pmid: 15496893
[6]
Denyer S P, Stewart G S A B . Int. Biodeterior. Biodegrad., 1998,41:261.
[7]
Kenawy E, Worley S D, Broughton R . Biomacromolecules, 2007,8:1359. https://www.ncbi.nlm.nih.gov/pubmed/17425365

doi: 10.1021/bm061150q pmid: 17425365
[8]
Ding W, Peng K M, Zou T, Wang R N, Guo J S, Tu W P, Liu C, Hu J Q . Pigm. Resin Technol., 2017,46:458.
[9]
Siedenbiedel F, Tiller J C . Polymers, 2012,4:46.
[10]
彭开美(Peng K M), 丁伟(Ding W), 涂伟萍(Tu W P), 胡剑青(Hu J Q), Liu Chao(Liu C), Yang Jian(Yang J) . 化学学报 (Acta Chimica Sinica), 2016,74(9):713.
[11]
Hui F, Debiemme-Chouvy C . Biomacromolecules, 2013,14:585. https://www.ncbi.nlm.nih.gov/pubmed/23391154

doi: 10.1021/bm301980q pmid: 23391154
[12]
Palermo E F, Kuroda K . Appl. Microbiol. Biotechnol., 2010,87:1605. https://www.ncbi.nlm.nih.gov/pubmed/20563718

doi: 10.1007/s00253-010-2687-z pmid: 20563718
[13]
Kuroda K, Caputo G A . Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol., 2013,5:49.
[14]
Xue Y, Xiao H N, Zhang Y . Int. J. Mol. Sci., 2015,16:3626. http://www.mdpi.com/1422-0067/16/2/3626

doi: 10.3390/ijms16023626 pmid: 25667977
[15]
Tashiro T . Macromol. Mater. Eng., 2001,286:63. http://doi.wiley.com/10.1002/%28ISSN%291439-2054

doi: 10.1002/(ISSN)1439-2054
[16]
Timofeeva L, Kleshcheva N . Appl. Microbiol. Biotechnol., 2011,89:475. https://www.ncbi.nlm.nih.gov/pubmed/20953604

doi: 10.1007/s00253-010-2920-9 pmid: 20953604
[17]
Mitchell D J, Kim D T, Steinman L, Fathman C G, Rothbard J B . J. Pept. Res., 2000,56:318. https://www.ncbi.nlm.nih.gov/pubmed/11095185

doi: 10.1034/j.1399-3011.2000.00723.x pmid: 11095185
[18]
Locock K E, Michl T D, Valentin J D, Vasilev K, Hayball J D, Qu Y, Traven A, Griesser H J, Meagher L, Haeussler M . Biomacromolecules, 2013,14:4021. https://www.ncbi.nlm.nih.gov/pubmed/24099527

doi: 10.1021/bm401128r pmid: 24099527
[19]
Mattheis C, Wang H, Meister C, Agarwal S . Macromol. Biosci., 2013,13:242. https://www.ncbi.nlm.nih.gov/pubmed/23255254

doi: 10.1002/mabi.201200217 pmid: 23255254
[20]
Motta G J, Milne C T, Corbett L Q . Ostomy Wound Manage., 2004,50:48.
[21]
Wu D Q, Zhu J, Han H, Zhang J Z, Wu F F, Qin X H, Yu J Y . Acta Biomater., 2018,65:305. https://www.ncbi.nlm.nih.gov/pubmed/28867649

doi: 10.1016/j.actbio.2017.08.048 pmid: 28867649
[22]
Kawabata A, Taylor J . Dyes Pigm., 2006,68:197.
[23]
Li Z L, Chen J, Cao W, Wei D, Zheng A N, Guan Y . Carbohydr. Polym., 2018,180:192. https://www.ncbi.nlm.nih.gov/pubmed/29103495

doi: 10.1016/j.carbpol.2017.09.080 pmid: 29103495
[24]
Treat N J, Smith D, Teng C, Flores J D, Abel B A, York A W, Huang F, McCormick C L . ACS Macro Lett., 2012,1:100. https://www.ncbi.nlm.nih.gov/pubmed/22639734

doi: 10.1021/mz200012p pmid: 22639734
[25]
Heydari A, Doostan F, Khoshnood H, Sheibani H . RSC Adv., 2016,6:33267.
[26]
Cui P F, Zhuang W R, Hu X, Xing L, Yu R Y, Qiao J B, He Y J, Li F Y, Ling D S, Jiang H L . Chem. Commun., 2018,54:8218. https://www.ncbi.nlm.nih.gov/pubmed/29985496

doi: 10.1039/c8cc04363a pmid: 29985496
[27]
Parsons K H, Mondal M H, McCormick C L, Flynt A S . Biomacromolecules, 2018,19:1111. https://www.ncbi.nlm.nih.gov/pubmed/29446934

doi: 10.1021/acs.biomac.7b01717 pmid: 29446934
[28]
Kim B R, Anderson J E, Mueller S A, Gaines W A, Kendall A M . Water Res., 2002,36:4433. https://www.ncbi.nlm.nih.gov/pubmed/12418646

doi: 10.1016/s0043-1354(02)00188-4 pmid: 12418646
[29]
Yeaman M R, Yount N Y . Pharmacol. Rev., 2003,55:27. https://www.ncbi.nlm.nih.gov/pubmed/12615953

doi: 10.1124/pr.55.1.2 pmid: 12615953
[30]
Wender P A, Galliher W C, Goun E A, Jones L R, Pillow T H . 2008,60:452.
[31]
Palermo E F, Sovadinova I, Kuroda K . Biomacromolecules, 2009,10:3098. https://www.ncbi.nlm.nih.gov/pubmed/19803480

doi: 10.1021/bm900784x pmid: 19803480
[32]
Binder W H . Angew. Chem. Int. Ed., 2008,47:3092. https://www.ncbi.nlm.nih.gov/pubmed/18338350

doi: 10.1002/anie.200800269 pmid: 18338350
[33]
Oren Z, Shai Y . Biopolymers, 1998,47:451. https://www.ncbi.nlm.nih.gov/pubmed/10333737

doi: 10.1002/(SICI)1097-0282(1998)47:6【-逻*辑*与-】amp;amp;lt;451::AID-BIP4【-逻*辑*与-】amp;amp;gt;3.0.CO;2-F pmid: 10333737
[34]
Matsuzaki K, Sugishita K, Fujii N, Miyajima K . Biochemistry, 1995,34:3423. https://www.ncbi.nlm.nih.gov/pubmed/7533538

doi: 10.1021/bi00010a034 pmid: 7533538
[35]
Gabriel G J, Som A, Madkour A E, Eren T, Tew G N . Mater. Sci. Eng., R. Rep., 2007,57:28.
[36]
Paltrinieri L, Wang M, Sachdeva S, Besseling N A M, Sudhölter E J R, Smet L C P M . J. Mater. Chem. A, 2017,5:18476.
[37]
Zhang Y M, Jiang J M, Chen Y M . Polymer, 1999,40:6189.
[38]
Zhou Z X, Wei D F, Guan Y, Zheng A N, Zhong J J . Mater. Sci. Eng. C Mater. Biol. Appl., 2011,31:1836.
[39]
Albert M, Feiertag P, Hayn G, Saf R, Hönig H . Biomacromolecules, 2003,4:1811. https://www.ncbi.nlm.nih.gov/pubmed/14606913

doi: 10.1021/bm0342180 pmid: 14606913
[40]
Wei D F, Ma Q X, Guan Y, Hu F Z, Zheng A N, Zhang X, Teng Z, Jiang H . Mater. Sci. Eng. C Mater. Biol. Appl., 2009,29:1776.
[41]
Choi H, Kim K, Lee D G . Fungal Biol., 2017,121:53. https://www.ncbi.nlm.nih.gov/pubmed/28007216

doi: 10.1016/j.funbio.2016.09.001 pmid: 28007216
[42]
Wang X, Lu P, Li Y, Xiao H N, Liu X Y . RSC Adv., 2016,6:8763.
[43]
Sahraro M, Yeganeh H, Sorayya M . Mater. Sci. Eng. C Mater. Biol. Appl., 2016,59:1025. https://www.ncbi.nlm.nih.gov/pubmed/26652461

doi: 10.1016/j.msec.2015.11.038 pmid: 26652461
[44]
Rogalskyy S, Bardeau J, Tarasyuk O, Fatyeyeva K . Polym. Int., 2012,61:686.
[45]
Rogalsky S, Bardeau J, Wu H, Lyoshina L, Bulko O, Tarasyuk O, Makhno S, Cherniavska T, Kyselov Y, Koo J H . J. Mater. Sci., 2016,51:7716. http://link.springer.com/10.1007/s10853-016-0054-x

doi: 10.1007/s10853-016-0054-x
[46]
Cao C L, Wu K J, Yuan W, Zhang Y M, Wang H P . Fibers Polym., 2017,18:1040.
[47]
Zhang C, Ying Z M, Luo Q J, Du H, Wang Y, Zhang K, Yan S G, Li X D, Shen Z Q, Zhu W P . J. Polym. Sci. Part A: Polym. Chem., 2017,55:2027.
[48]
Wei D, Li Z L, Wang H, Liu J, Xiao H L, Zheng A N, Guan Y . Cellulose, 2017,24:3901.
[49]
Li J R, Ye Y, Xiao H N, He B H, Qian L Y . Polymers, 2017,9:633.
[50]
Gabriel G J, Madkour A E, Dabkowski J M, Nelson C F, Nusslein K, Tew G N . Biomacromolecules, 2008,9:2980. https://www.ncbi.nlm.nih.gov/pubmed/18850741

doi: 10.1021/bm800855t pmid: 18850741
[51]
Exley S E, Paslay L C, Sahukhal G S, Abel B A, Brown T D, McCormick C L, Heinhorst S, Koul V, Choudhary V, Elasri M O, Morgan S E . Biomacromolecules, 2015,16:3845. https://www.ncbi.nlm.nih.gov/pubmed/26558609

doi: 10.1021/acs.biomac.5b01162 pmid: 26558609
[52]
Zhang H, Liu Y N, Luo T, Zhao Q L, Cui K, Huang J, Jiang T, Ma Z . Polym. Chem., 2018,9:3922.
[53]
Peng K M, Zou T, Ding W, Wang R N, Guo J S, Round J J, Tu W P, Liu C, Hu J Q . RSC Adv., 2017,7:24903.
[54]
Vorob'eva A I, Sagitova D R, Gorbunova M N, Muslukhov R R, Kolesov S V, Tolstikov A G, Monakov Y B . Polym. Sci. Ser. B, 2007,49:172.
[55]
Gorbunova M, Lemkina L . J. Biomed. Mater. Res., 2016,104:630. https://www.ncbi.nlm.nih.gov/pubmed/26489040

doi: 10.1002/jbm.a.35596 pmid: 26489040
[56]
Gorbunova M, Lemkina L, Borisova I . Ostomy Wound Manage., 2018,105:426.
[57]
Grace J L, Elliott A G, Huang J X, Schneider E K, Truong N P, Cooper M A, Li J, Davis T P, Quinn J F, Velkov T, Whittaker M R . J. Mater. Chem. B, 2017,5:531. https://www.ncbi.nlm.nih.gov/pubmed/28966792

doi: 10.1039/C6TB02787C pmid: 28966792
[58]
Sun X X, Ji J H, Zhang W, Wang G X, Zhen Z C, Wang P L . J. Appl. Polym. Sci., 2017,134:44821.
[59]
Xin Z R, Du S S, Zhao C Y, Chen H, Sun M, Yan S J, Luan S F, Yin J H . Appl. Surf. Sci., 2016,365:99. https://linkinghub.elsevier.com/retrieve/pii/S0169433215032225

doi: 10.1016/j.apsusc.2015.12.217
[60]
Villanueva M E, Gonzalez J A, Rodriguez-Castellon E, Teves S, Copello G J . Mater. Sci. Eng. C Mater. Biol. Appl., 2016,67:214. https://www.ncbi.nlm.nih.gov/pubmed/27287116

doi: 10.1016/j.msec.2016.05.052 pmid: 27287116
[61]
Zhang H J, Zhang L X, Han X L, Kuang L J, Hua D B . Ind. Eng. Chem. Res., 2018,57:1662. https://pubs.acs.org/doi/10.1021/acs.iecr.7b04687

doi: 10.1021/acs.iecr.7b04687
No related articles found!