中文
Announcement
More
Progress in Chemistry 2019, Vol. 31 Issue (5): 690-698 DOI: 10.7536/PC180928 Previous Articles   Next Articles

Self-Healing Polymers Materials Based on Dynamic Supramolecular Motifs

Rui Hou, Guiqun Li, Yan Zhang*(), Mingjun Li, Guiming Zhou, Xiaoming Chai   

  1. Shandong Institude of Non-metallic Materials, Jinan 250031, China
  • Received: Online: Published:
  • Contact: Yan Zhang
  • About author:
Richhtml ( 43 ) PDF ( 2115 ) Cited
Export

EndNote

Ris

BibTeX

The self-healing function of materials has high application value in many fields. It is reported some factors impact the self-healing efficiency, such as the constants of bond disassemble/assemble, the direction of bonding, chain relaxation time. According to the materials’ properties, self-healing materials can be divided into extrinsic self-healing polymer materials and intrinsic self-healing polymer materials. The possibility to disassemble structurally dynamic polymers is the basic of intrinsic self-healing materials, and a Diels-Alder reaction is used to realize this idea. Within the intrinsic self-healing materials, supramolecular chemistry is highly attractive to achieve self-healing for the fast equilibrium state, bonding directionality, and sensitivity. The research of self-healing polymers materials based on dynamic supramolecular motifs is built on the work on hydrogen-bonded monomer units. In this paper, the research progress of supramolecular self-healing polymer is the center of attention. The design and synthesis of supramolecular are summarized, at the same time, the application of supramolecular materials is introduced. At the end of the paper, the future research direction and development trend are prospected. It is considered that whether the environmental resistance of self-healing polymers materials can reach the standard is the key to its future application.

Fig. 1 Structure and schematic diagram of PBA-UPy polymer
Fig. 2 Schematic diagram of self-healing polymer with force chromogenic performance[38]
Fig. 3 Molecular structure and self-healing effect of supramolecular polyurethane elastomer[46]
[1]
Bekas D G, Tsirka K, Baltzis D, Paipetis A S . Compos. Part A-APPL. S, 2016,87:92.
[2]
Carlson H C, Goretta K . Mater. Sci. Eng. B, 2006,132:2.
[3]
Scheiner M, Dickens T J, Okoli O . Polymer., 2016,83:260.
[4]
Murphy E B, Wudl F . Prog. Polym. Sci., 2010,35:223.
[5]
李思超(Li S C), 韩朋(Han P), 许华平(Xu H P) . 化学进展 (Progress in Chemistry), 2012,24(07):1346.
[6]
Brown E N, White S R, Sottos N R . J. Mater. Sci., 2004,39:1703. http://link.springer.com/10.1023/B:JMSC.0000016173.73733.dc

doi: 10.1023/B:JMSC.0000016173.73733.dc
[7]
Toohey K S, Sottos N R, Lewis J A, Moore J S, White S R . Nat. Mater., 2007,6:581. https://www.ncbi.nlm.nih.gov/pubmed/17558429

doi: 10.1038/nmat1934 pmid: 17558429
[8]
Hansen C J, White S R, Sottos N R, Lewis J A . Adv. Funct. Mater., 2011,21:4320.
[9]
Lee J Y, Buxton G A, Balazs A C . J. Chem. Phys., 2004,121:5531. https://www.ncbi.nlm.nih.gov/pubmed/15352848

doi: 10.1063/1.1784432 pmid: 15352848
[10]
Tyagi S, Lee J Y, And G A B, Balazs A C . Macromolecules, 2004,37:9160.
[11]
Corten C C, Urban M W, Shelby F . Adv. Mater., 2009,21:5011. https://www.ncbi.nlm.nih.gov/pubmed/25377855

doi: 10.1002/adma.200901940 pmid: 25377855
[12]
Huang L, Yi N, Wu Y, Zhang Y, Zhang Q, Huang Y . Adv. Mater., 2013,25:2224. https://www.ncbi.nlm.nih.gov/pubmed/23417742

doi: 10.1002/adma.201204768 pmid: 23417742
[13]
Toohey K S, Hansen C J, Lewis J A, White S R, Sottos N R . Adv. Funct. Mater., 2010,19:1399.
[14]
Wei Z, Yang J H, Zhou J, Xu F, Zrínyi M, Patrick H D, Yoshihito O, Chen Y M . Chem. Soc. Rev., 2014,43:8114. https://www.ncbi.nlm.nih.gov/pubmed/25144925

doi: 10.1039/c4cs00219a pmid: 25144925
[15]
Yang Y, Urban M W . Chem. Soc. Rev., 2013,42:7446. https://www.ncbi.nlm.nih.gov/pubmed/23864042

doi: 10.1039/c3cs60109a pmid: 23864042
[16]
Yang Y, Ding X, Urban M W . Prog. Polym. Sci., 2015,49/50:34.
[17]
Roy N, Bruchmann B, Lehn J M . Chem. Soc. Rev., 2015,44:3786. https://www.ncbi.nlm.nih.gov/pubmed/25940832

doi: 10.1039/c5cs00194c pmid: 25940832
[18]
Lehn J M . J. Inclusion Phenom., 1988,6:351.
[19]
Jorgensen W L . Proc. Natl. Acad. Sci. U. S. A., 1993,90:1635. https://www.ncbi.nlm.nih.gov/pubmed/8446574

doi: 10.1073/pnas.90.5.1635 pmid: 8446574
[20]
Ghoneim M M, El Sonbaty A Z, Diab M A, El Bindary A A, Serag L S . Polym.-Plast. Technol. Eng., 2015,54:100.
[21]
de Espinosa L M, Fiore G L, Weder C, Foster E J, Simon Y C . Prog. Polym. Sci., 2015,49/50:60.
[22]
Yang L, Tan X, Wang Z, Zhang X . Chem. Rev., 2015,115:7196. https://www.ncbi.nlm.nih.gov/pubmed/25768045

doi: 10.1021/cr500633b pmid: 25768045
[23]
Roy N, Tomović Ž, Buhler E, Lehn J M . Chemistry, 2016,22:13513. https://www.ncbi.nlm.nih.gov/pubmed/27226034

doi: 10.1002/chem.201601378 pmid: 27226034
[24]
Cordier P, Tournilhac F, Soulié-Ziakovic C, Leibler L . Nature, 2008,451:977. https://www.ncbi.nlm.nih.gov/pubmed/18288191

doi: 10.1038/nature06669 pmid: 18288191
[25]
Zhang A, Yang L, Lin Y, Yan L, Lu H, Wang L . J. Appl. Polym. Sci., 2013,129:2435.
[26]
Faghihnejad A, Feldman K E, Yu J, Tirrell M V, Israelachvili J N, Hawker C J, Kramer E J, Zeng H B . Adv. Funct. Mater., 2014,24:2322. http://doi.wiley.com/10.1002/adfm.v24.16

doi: 10.1002/adfm.v24.16
[27]
Chen Y L, Kushner A M, Williams G A, Guan Z B . Nat. Chem., 2012,4:467. 9073180c-4421-4644-a572-00963606043ahttp://dx.doi.org/10.1038/NCHEM.1314

doi: 10.1038/NCHEM.1314
[28]
Hentschel J, Kushner A M, Ziller J, Guan Z B . Angew. Chem., 2012,124, 10713.
[29]
Yan M, Tang J, Xie H L, Ni B, Zhang H L, E Q Chen . J. Mater. Chem. C, 2015,3:8526.
[30]
Ni B, Xie H L, Tang J, Zhang H L, Chen E Q . Chem. Commun., 2016,52:10257. https://www.ncbi.nlm.nih.gov/pubmed/27465691

doi: 10.1039/c6cc04199j pmid: 27465691
[31]
Yanagisawa Y, Nan Y, Okuro K, Aida T . Science, 2018,359:72. https://www.ncbi.nlm.nih.gov/pubmed/29242235

doi: 10.1126/science.aam7588 pmid: 29242235
[32]
Chirila T V, Hui H L, Oddon M, Uieuwenhuizen M M L, Blakey I, Nicholson T M . J. Appl. Polym. Sci., 2013,131:1001.
[33]
Corte L, Maes F, Montarnal D, Cantournet S, Tournilhac F, Leibler L . Soft Matter, 2012,8:1681. https://www.ncbi.nlm.nih.gov/pubmed/28145557

doi: 10.1039/c6sm02524b pmid: 28145557
[34]
Van Gemert G M L, Peeters J W, Söntjens S H M, Janssen H M, Bosman A W . Macromol. Chem. Phys., 2012,213:234.
[35]
Burnworth M, Tang L, Kumpfer J R, Buncan A J, Beyer F L, Fiore G L . Nature, 2011,472:334. https://www.ncbi.nlm.nih.gov/pubmed/21512571

doi: 10.1038/nature09963 pmid: 21512571
[36]
Bode S, Zedler L, Schacher F H, Dietzek B, Schmitt M, Popp J, Hager M D, Schubert U S . Adv. Mater., 2013,25:1634. https://www.ncbi.nlm.nih.gov/pubmed/23355192

doi: 10.1002/adma.201203865 pmid: 23355192
[37]
Yuan J C, Fang X L, Zhang L X, Hong G N, Lin Y G, Zheng Q F, Xu Y Z, Ruan Y H, Weng W G, Xia H P, Chen G H . J. Mater. Chem., 2012,22:11515.
[38]
Hong G N, Zhang H, Lin Y G, Chen YJ, Xu Y Z, Weng W G, Xia H P . Macromolecules, 2013,46:8649.
[39]
Wang Z, Urban M W . Polym. Chem., 2013,4:4897.
[40]
Zheng Q, Ma Z, Gong S . J. Mater. Chem. A, 2016,4:3324. https://www.ncbi.nlm.nih.gov/pubmed/32263267

doi: 10.1039/c6tb00278a pmid: 32263267
[41]
Hunter C A, Sanders J K M . J. Am. Chem. Soc., 1990,112:5525.
[42]
Colquhoun H M, Goodings E P, Maud J M, Stoddart J F, Wolstenholme J B, Williams D J . Chem. Informationsdienst., 1985,16:607.
[43]
Burattini S, Colquhoun H M, Greenland B W, Hayes W . Faraday Discuss., 2009,143:251. https://www.ncbi.nlm.nih.gov/pubmed/20334106

doi: 10.1039/b900859d pmid: 20334106
[44]
Burattini S, Colquhoun H M, Fox J D, Friedmann D, Greenland B W, Harris P J . Chem. Commun., 2009,44:6717. https://www.ncbi.nlm.nih.gov/pubmed/19885456

doi: 10.1039/b910648k pmid: 19885456
[45]
Xu Z, Peng J, Yan N, Yu H, Zhang S, Liu K Q, Fang Y . Soft Matter, 2012,9:1091.
[46]
Feula A, Pethybridge A, Giannakopoulos I, Tang X, Chippindale A, Siviour C R, Buckley C P, Hamley I W, Haye W S . Macromolecules, 2015,48:6132.
[47]
Bhattacharjee S, Bhattacharya S . J. Mater. Chem. A, 2014,2(42):17889.
[48]
Huang C W, Mohamed M G, Zhu C Y, Kuo S W . Macromolecules, 2016,49:5374.
[49]
He L, Ran X, Li J X, Gao Q Q, Kuang Y M, Guo L J . J. Mater. Chem. A, 2018,6:16600.
[50]
Amaral A J R, Pasparakis G . Polym. Chem., 2017,8, 6464.
[51]
Nakahata M, Takashima Y, Harada A . Macromol. Rapid Commun., 2015,37:86. https://www.ncbi.nlm.nih.gov/pubmed/26398922

doi: 10.1002/marc.201500473 pmid: 26398922
[52]
Kakuta T, Takashima Y, Nakahata M, Otsubo M, Yamaguchi H, Harada A . Adv. Mater., 2013,25:2849. https://www.ncbi.nlm.nih.gov/pubmed/23423947

doi: 10.1002/adma.201205321 pmid: 23423947
[53]
Yu C, Wang C, Chen S . Adv. Funct. Mater., 2014,24:1235. http://doi.wiley.com/10.1002/adfm.v24.9

doi: 10.1002/adfm.v24.9
[54]
Zhang M M, Xu D H, Yan X Z, Chen J Z, Dong S Y, Zheng B, Huang F H . Angew. Chem., 2012,51:7011. https://www.ncbi.nlm.nih.gov/pubmed/22653895

doi: 10.1002/anie.201203063 pmid: 22653895
[55]
Li S, Lu H Y, Shen Y, Chen C F . Macromol. Chem. Phys., 2013,214:1596.
[56]
Pluth M D, Raymond K N . Cheminform, 2007,36:161.
[57]
Wei P, Yan X, Huang F . Chem. Soc. Rev., 2015,44:815. https://www.ncbi.nlm.nih.gov/pubmed/25423355

doi: 10.1039/c4cs00327f pmid: 25423355
[58]
Deng Z X, Guo Y, Zhao X, Ma P X, Guo B L . Chem. Mater., 2018, 30(5): acs.chemmater.8b00008. https://www.ncbi.nlm.nih.gov/pubmed/29606799

doi: 10.1021/acs.chemmater.8b00179 pmid: 29606799
[59]
Peng L, Zhang M J, Lin M S, Fu Q . RSC Adv., 2018,8:25313.
[60]
王梅祥(Wang M X) . 化学进展 (Progress in Chemistry), 2018,30(5):463.
[61]
Jeon I, Cui J, Illeperuma W R, Aizenberg J, Viassak JJ . Adv. Mater., 2016,28:4678. https://www.ncbi.nlm.nih.gov/pubmed/27061799

doi: 10.1002/adma.201600480 pmid: 27061799
[62]
Kalista S J, Pflug J R, Varley R J . Polym. Chem., 2013,4:4910.
[63]
Pu W, Jiang F, Chen P, Wei B . Soft Matter, 2017,13:5645. https://www.ncbi.nlm.nih.gov/pubmed/28828421

doi: 10.1039/c7sm01492a pmid: 28828421
[64]
Huang Y, Lawrence P G, Lapitsky Y . Langmuir, 2014,30:7771. https://www.ncbi.nlm.nih.gov/pubmed/24476067

doi: 10.1021/la404606y pmid: 24476067
[65]
Aboudzadeh M A, Muñoz M E, Santamaría A, Marcilla R, Mecerreyes D . Macromol. Rapid Commun., 2012,33:314. https://www.ncbi.nlm.nih.gov/pubmed/22262519

doi: 10.1002/marc.201100728 pmid: 22262519
[66]
Nejadnik M R, Yang X, Bongio M, Alghamdi H S, Jeroen J J P van den Beucken, Huysmans M C, Jansen J A, Hilborn J, Ossipov D, Leeuwenburgh S C G . Biomaterials, 2014,35:6918. https://www.ncbi.nlm.nih.gov/pubmed/24862440

doi: 10.1016/j.biomaterials.2014.05.003 pmid: 24862440
[67]
Froimowicz P, Klinger D, Landfester K . Chem. - Eur. J., 2011,17:12465. https://www.ncbi.nlm.nih.gov/pubmed/21938746

doi: 10.1002/chem.201100685 pmid: 21938746
[68]
Xue C H, Zhang Z D, Zhang J, Jia S T . J. Mater. Chem. A, 2014,2:15001. http://xlink.rsc.org/?DOI=C4TA02396J

doi: 10.1039/C4TA02396J
[69]
Ji X, Shi B, Wang H, Xia D, Jie K, Wu Z L, Huang F H . Adv. Mater., 2015,27:8062. https://www.ncbi.nlm.nih.gov/pubmed/26540139

doi: 10.1002/adma.201504355 pmid: 26540139
[70]
Zhang Q, Shi C Y, Qu D H, Long Y T, Feringa B L, Tian H . Sci. Adv., 2018, 4: eaat8192. https://www.ncbi.nlm.nih.gov/pubmed/30062126

doi: 10.1126/sciadv.aat8192 pmid: 30062126
[71]
Yan X, Xu D, Chi X, Chen J, Dong S, Ding X, Yu Y H, Huang F H . Adv. Mater., 2012,24:362. https://www.ncbi.nlm.nih.gov/pubmed/22161963

doi: 10.1002/adma.201103220 pmid: 22161963
[1] Lijun Bao, Junwu Wei, Yangyang Qian, Yujia Wang, Wenjie Song, Yunmei Bi. Synthesis, Properties and Applications of Enzyme-Responsive Linear-Dendritic Block Copolymers [J]. Progress in Chemistry, 2022, 34(8): 1723-1733.
[2] Dongxue Han, Xue Jin, Wangen Miao, Tifeng Jiao, Pengfei Duan. Responsiveness of Excited State Chirality Based on Supramolecular Assembly [J]. Progress in Chemistry, 2022, 34(6): 1252-1262.
[3] Hang Yin, Zhi Li, Xiaofeng Guo, Anchao Feng, Liqun Zhang, San Hoa Thang. Selection Principle of RAFT Chain Transfer Agents and Universal RAFT Chain Transfer Agents [J]. Progress in Chemistry, 2022, 34(6): 1298-1307.
[4] Tianyu Zhou, Yanbo Wang, Yilin Zhao, Hongji Li, Chunbo Liu, Guangbo Che. The Application of Aqueous Recognition Molecularly Imprinted Polymers in Sample Pretreatment [J]. Progress in Chemistry, 2022, 34(5): 1124-1135.
[5] Yuling Liu, Tengda Hu, Yilian Li, Yang Lin, Borsali Redouane, Yingjie Liao. Fast Self-Assembly Methods of Block Copolymer Thin Films [J]. Progress in Chemistry, 2022, 34(3): 609-615.
[6] Xinhua Cao, Qingqing Han, Aiping Gao, Guixia Wang. Supramolecular Gel with Response Towards Gaseous Acid and Organic Amine [J]. Progress in Chemistry, 2021, 33(9): 1538-1549.
[7] Yubing Wang, Jie Chen, Wei Yan, Jianwen Cui. Preparation and Application of Conjugated Microporous Polymers [J]. Progress in Chemistry, 2021, 33(5): 838-854.
[8] Tingting Heng, Hui Zhang, Mingxue Chen, Xin Hu, Liang Fang, Chunhua Lu. Graft Modification of PVDF-Based Fluoropolymers [J]. Progress in Chemistry, 2021, 33(4): 596-609.
[9] Yena Feng, Shuhe Liu, Shubo Zhang, Tong Xue, Honglin Zhuang, Anchao Feng. Preparation of SiO2/Polymer Nanocomposites Based on Polymerization-Induced Self-Assembly [J]. Progress in Chemistry, 2021, 33(11): 1953-1963.
[10] Yujian Liu, Zhimin Liu, Zhigang Xu, Gongke Li. Stir Bar Sorptive Extraction Technology [J]. Progress in Chemistry, 2020, 32(9): 1334-1343.
[11] Jing Wen, Yuhong Li, Li Wang, Xiunan Chen, Qi Cao, Naipu He. Carbon Dioxide Smart Materials Based on Chitosan [J]. Progress in Chemistry, 2020, 32(4): 417-422.
[12] Li Liangjun, Jianhui Deng, Jianwei Guo, Hangbo Yue. Synthesis and Properties of Microporous Organic Polymers Based on Adamantane [J]. Progress in Chemistry, 2020, 32(2/3): 190-203.
[13] Peng Zhang, Xinjie Guo, Qian Zhang, Caifeng Ding. Photochemical Sensing Based on the Aggregation of Organic Dyes [J]. Progress in Chemistry, 2020, 32(2/3): 286-297.
[14] Kerui Chen, Xin Hu, Jiangkai Qiu, Ning Zhu, Kai Guo. Synthesis of Bottlebrush Polymers by Ring-Opening Metathesis Polymerization [J]. Progress in Chemistry, 2020, 32(1): 93-102.
[15] Jingshi Liang, Jiaming Zeng, Junjie Li, Jueqin She, Ruixuan Tan, Bo Liu. Cationic Antimicrobial Polymers [J]. Progress in Chemistry, 2019, 31(9): 1263-1282.