中文
Announcement
More
Progress in Chemistry 2019, Vol. 31 Issue (5): 752-759 DOI: 10.7536/PC180904 Previous Articles   Next Articles

Membrane Materials for Desulfurization of Gasoline via Pervaporation

Xia Zhan1,2,**(), Xiaofang Sun1, Hengli Xu1, Jiding Li2   

  1. 1. Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry,Beijing Technology and Business University,Beijing 100048,China
    2. State Key Laboratory of Chemical Engineering, Tsinghua University, Beijing 100084, China
  • Received: Online: Published:
  • Contact: Xia Zhan
  • About author:
  • Supported by:
    Beijing Natural Science Committee-Beijing Education Committee Joint Foundation(KZ201910011012); State Key Laboratory of Chemical Engineering(SKL-ChE-18A01); National Natural Science Foundation of China(21736001); National Natural Science Foundation of China(21776153); National Natural Science Foundation of China(21206001)
Richhtml ( 18 ) PDF ( 892 ) Cited
Export

EndNote

Ris

BibTeX

The membrane based pervaporation process for sulfur removal from gasoline is a new kind of desulfurization technology, which maintains distinct advantages such as low investment and operating cost, low octane value loss, etc. The research background of pervaporation desulphurization is briefly introduced. Based on solution-diffusion model, the selection of polymer membrane materials used for desulfurization is analyzed under the guidance of solubility parameter theory. Based on the research progress of pervaporation desulfurization membranes reported in recent 20 years, the polymeric membrane materials and inorganic/organic hybrid membrane materials used for desulfurization are introduced in detail, including polydimethylsiloxane, polyethylene glycol, polyimide, polyether amide, cellulose acetate, poly-phosphate nitrile, etc. The structural characteristics, modification methods and the relationship between structure and properties of membrane materials are also discussed. The desulfurization performances of different membrane materials are compared and the primary challenge for advancement of pervaporation desulfurization membrane is summarized. Finally, the prospect and research direction of pervaporation desulfurization are proposed.

Table 1 Solubility parameters of typical sulfur species in FCC gasoline[1,2,3]
Table 2 Solubility parameters of typical polymeric membrane materials[1,2,3]
Fig. 1 Schematic structure of the PDMS/BTESE-derived organosilica hybrid membrane[11]
Fig. 2 Fabrication of PDMS-SiO2 nanocomposite membranes[16]
Fig. 3 Schematic diagram of hybrid films by pervaporation[29]
Fig. 4 Schematic for ion exchange treatment on modified PPP membrane surface[40]
Fig. 5 Comparison of pervaporation desulfurization performances reported in literatures
[1]
Fihri A, Mahfouz R, Shahrani A, Taie I, Alabedi G . Chem. Eng. Process., 2016,107:94.
[2]
Mortaheb H R, Ghaemmaghami F A, Mokhtarani B . Chem. Eng. Res. Des., 2012,90:409.
[3]
Lin L G, Zhang Y Z, Kong Y . Fuel, 2009,88:1799.
[4]
White L S . J. Membr. Sci., 2006,286(1):26.
[5]
Lin L G, Kong Y, Wang G, Qu H M, Yang J R, Shi D Q . J. Membr. Sci., 2006,285(1/2):144.
[6]
Li B, Xu D, Jiang Z Y, Zhang X F, Liu W P, Dong X . J. Membr. Sci., 2008,322(2):293.
[7]
Liu G P, Wei W, Jin W Q, Xu N P . Chinese J. Chem. Eng., 2012,20(1):62.
[8]
Chen J, Li J, Qi R B, Ye H, Chen C X . J. Membr. Sci., 2008,322(1):113. https://linkinghub.elsevier.com/retrieve/pii/S0376738808004651

doi: 10.1016/j.memsci.2008.05.032
[9]
Chen J, Li J D, Qi R B, Ye H . Appl. Biochem. Biotechnol., 2010,160(2):486. https://www.ncbi.nlm.nih.gov/pubmed/18830823

doi: 10.1007/s12010-008-8368-z pmid: 18830823
[10]
Liu L L, Han X L, Hu W L, Zhao B X, Fan A . Org. Lett., 2017,57(10):1127.
[11]
Xu R, Zou L, Lin P, Zhang Q, Zhong J . Fuel Processing Technology, 2016,154:188. https://linkinghub.elsevier.com/retrieve/pii/S0378382016303836

doi: 10.1016/j.fuproc.2016.08.031
[12]
Qi R B, Wang Y J, Chen J, Li J D, Zhu S L . Sep. Purif. Technol., 2007,57(1):170. https://linkinghub.elsevier.com/retrieve/pii/S1383586607001761

doi: 10.1016/j.seppur.2007.04.001
[13]
Cao R J, Zhang X F, Wu H, Wang J T, Liu X F, Jiang Z Y . Journal of Hazardous Materials, 2011,187(1):324.
[14]
Nair S, Tatarchuk B J . Fuel, 2010,89(11):3218.
[15]
Han X L, Sun H X, Liu L L, Wang Y Q, He G H, Li J D . Sep. Purif. Technol., 2019,217:86. https://linkinghub.elsevier.com/retrieve/pii/S1383586618330156

doi: 10.1016/j.seppur.2019.01.075
[16]
Li B, Liu W P, Wu H, Yu S N, Cao R J, Jiang Z Y . J. Membr. Sci., 2012,(415/416):278.
[17]
Xu R, Liu G P, Dong X L, Jin W Q . Desalination, 2010,258(1):106.
[18]
Yang D, Yang S, Jiang Z Y, Yu S N, Zhang J L, Pan F S, Cao X Z, Wang B Y, Yang J . Membr. Sci., 2015,487:152.
[19]
Yu S N, Pan F S, Yang S, Di H, Jiang Z Y, Wang B Y, Liu Z X, Cao X Z . Chem. Eng. Sci., 2015,135:479.
[20]
Yu S N, Jiang Z Y, Ding H, Pan F S, Wang B Y, Yang J, Cao X Z . J. Membr. Sci., 2015,481:73.
[21]
Zhang Q G, Fan B C, Liu Q L, Zhu A M, Shi F F . J. Membr. Sci., 2011,366:335.
[22]
Qi R B, Wang Y J, Chen J, Li J D, Zhu S . Sep. Purif. Technol., 2007,295:114.
[23]
Liu W P, Li B, Cao R, Jiang Z Y, Yu S N, Liu G H, Wu H . J. Membr. Sci., 2011,378(1/2):382.
[24]
Rychlewska K, Kujawski W, Konieczny K . Chemical Engineering Journal, 2017,309:435.
[25]
Li W D, Pan F S, Song Y M, Wang M D, Wang H J, Walker S, Wu H, Jiang Z Y . Chinese Journal of Chemical Engineering, 2017,25:1563.
[26]
Ding H, Pan F S, Mulalic E, Gomaa H, Li W D, Yang H, Wu H, Jiang Z Y, Wang B Y, Cao X Z, Zhang P . J. Membr. Sci., 2017,526:94.
[27]
Pan F S, Ding H, Li W D, Song Y M, Yang H, Wu H, Jiang Z Y, Wang B Y, Cao X Z . J. Membr. Sci., 2017,545:29.
[28]
Yu S N, Jiang Z Y, Yang S, Di H, Zhou B F, Gu K, Yang D, Pan F S, Wang B Y, Wang S, Cao X Z . J. Membr. Sci., 2016,514:440.
[29]
Pan F S, Wang M D, Ding H, Song Y M, Li W D, Hu H, Jiang Z Y, Wang B Y, Cao X Z . J. Membr. Sci., 2018,552:1.
[30]
Pan F S, Li W D, Zhang Y, Sun J, Wang M D, Wu H, Jiang Z H . AIChE J., 2019,65(1):196.
[31]
Lin L G, Wang G, Qu H M, Yang J R, Wang Y F, Shi D Q, Kong Y . J. Membr. Sci., 2006,280(1/2):651.
[32]
Lin L G, Kong Y, Xie K K, Lu F W, Liu R K, Guo L, Shao S, Yang J R, Shi D Q, Zhang Y Z . Sep. Purif. Methods., 2008,61(3):293.
[33]
Hu W L, Han X L, Liu L L, Zhang X, Xu J Q, Wang B Y, Zhang P, Cao X Z . Can. J. Chem. Eng. 2017,95:364.
[34]
Yang Z J, Zhang W V, Li J D, Chen J . Desalin. Water. Treat., 2012,46(1/3):321.
[35]
Han X L, Hu T T, Wang Y, Chen H Y, Wang Y Q, Yao R Q, Ma X X, Li J D, Li X F . Sep. Purif. Technol., 2018, https://doi.org/10.1016/j.seppur.2018.02.035 https://doi.org/10.1016/j.seppur.2018.02.035
[36]
Hou Y F, Liu M, Huang Y Q, Zhao L L, Wang J F, Cheng Q, Niu Q S . J. Membr. Sci., 2016,134(6):43409.
[37]
Sha S, Kong Y, Yang J R . J. Membr. Sci., 2012,415/416(10):835. https://linkinghub.elsevier.com/retrieve/pii/S0376738812004607

doi: 10.1016/j.memsci.2012.06.001
[38]
Sha S, Kong Y, Yang J R . Energ Fuel., 2012,26(11):6925. e0aad2ea-4d80-4700-9efb-e3e751c28f8ahttp://dx.doi.org/10.1021/ef300986n

doi: 10.1021/ef300986n
[39]
Lu F W, Kong Y, Lv H L, Ding J, Yang J R . Adv. Mater. Res., 2011,150/151:317.
[40]
Yang Z J, Zhang W, Wang T, Li J D . J. Membr. Sci., 2014,454(6):463. https://linkinghub.elsevier.com/retrieve/pii/S0376738813009897

doi: 10.1016/j.memsci.2013.12.036
[41]
Yang Z J, Zhang W Y, Li J D, Chen J X . Sep. Purif. Methods., 2012,93(3):15.
[42]
Yang Z J, Wang Z Q, Li J D, Chen J X . RSC Adv., 2012,2(30):11432. http://xlink.rsc.org/?DOI=c2ra21418k

doi: 10.1039/c2ra21418k
[43]
Yang Z J, Wang T, Zhan X, Li J D, Chen J X . Ind. Eng. Chem. Res., 2013,52(38):13801. https://pubs.acs.org/doi/10.1021/ie402022a

doi: 10.1021/ie402022a
[44]
Liu G P, Huan W S, Shen J, Li Q Q, Huang Y H, Jin W Q, Lee K R, Lai J Y . J. Mater. Chem. A, 2015,3(8):4510. http://xlink.rsc.org/?DOI=C4TA05881J

doi: 10.1039/C4TA05881J
[1] Lijun Bao, Junwu Wei, Yangyang Qian, Yujia Wang, Wenjie Song, Yunmei Bi. Synthesis, Properties and Applications of Enzyme-Responsive Linear-Dendritic Block Copolymers [J]. Progress in Chemistry, 2022, 34(8): 1723-1733.
[2] Hang Yin, Zhi Li, Xiaofeng Guo, Anchao Feng, Liqun Zhang, San Hoa Thang. Selection Principle of RAFT Chain Transfer Agents and Universal RAFT Chain Transfer Agents [J]. Progress in Chemistry, 2022, 34(6): 1298-1307.
[3] Tianyu Zhou, Yanbo Wang, Yilin Zhao, Hongji Li, Chunbo Liu, Guangbo Che. The Application of Aqueous Recognition Molecularly Imprinted Polymers in Sample Pretreatment [J]. Progress in Chemistry, 2022, 34(5): 1124-1135.
[4] Yuling Liu, Tengda Hu, Yilian Li, Yang Lin, Borsali Redouane, Yingjie Liao. Fast Self-Assembly Methods of Block Copolymer Thin Films [J]. Progress in Chemistry, 2022, 34(3): 609-615.
[5] Yubing Wang, Jie Chen, Wei Yan, Jianwen Cui. Preparation and Application of Conjugated Microporous Polymers [J]. Progress in Chemistry, 2021, 33(5): 838-854.
[6] Tingting Heng, Hui Zhang, Mingxue Chen, Xin Hu, Liang Fang, Chunhua Lu. Graft Modification of PVDF-Based Fluoropolymers [J]. Progress in Chemistry, 2021, 33(4): 596-609.
[7] Yujian Liu, Zhimin Liu, Zhigang Xu, Gongke Li. Stir Bar Sorptive Extraction Technology [J]. Progress in Chemistry, 2020, 32(9): 1334-1343.
[8] Jing Wen, Yuhong Li, Li Wang, Xiunan Chen, Qi Cao, Naipu He. Carbon Dioxide Smart Materials Based on Chitosan [J]. Progress in Chemistry, 2020, 32(4): 417-422.
[9] Li Liangjun, Jianhui Deng, Jianwei Guo, Hangbo Yue. Synthesis and Properties of Microporous Organic Polymers Based on Adamantane [J]. Progress in Chemistry, 2020, 32(2/3): 190-203.
[10] Kerui Chen, Xin Hu, Jiangkai Qiu, Ning Zhu, Kai Guo. Synthesis of Bottlebrush Polymers by Ring-Opening Metathesis Polymerization [J]. Progress in Chemistry, 2020, 32(1): 93-102.
[11] Jingshi Liang, Jiaming Zeng, Junjie Li, Jueqin She, Ruixuan Tan, Bo Liu. Cationic Antimicrobial Polymers [J]. Progress in Chemistry, 2019, 31(9): 1263-1282.
[12] Yunbo Jiang, Huanhuan Li, Ye Tao, Runfeng Chen, Wei Huang. Thermally Activated Delayed Fluorescence Polymers and Applications in Organic Light Emitting Devices [J]. Progress in Chemistry, 2019, 31(8): 1116-1128.
[13] Hao Zhang, Jing Liu, Kun Cui, Tao Jiang, Zhi Ma. Synthesis and Application of Guanidine-Based Antibacterial Polymers [J]. Progress in Chemistry, 2019, 31(5): 681-689.
[14] Rui Hou, Guiqun Li, Yan Zhang, Mingjun Li, Guiming Zhou, Xiaoming Chai. Self-Healing Polymers Materials Based on Dynamic Supramolecular Motifs [J]. Progress in Chemistry, 2019, 31(5): 690-698.
[15] Xiaowen Xie, Xiaoguo Ma, Lihui Guo. Molecularly Imprinting Polymers for Detection and Removal of Environmental Endocrine Disruptors [J]. Progress in Chemistry, 2019, 31(12): 1749-1758.