中文
Announcement
More
Progress in Chemistry 2019, Vol. 31 Issue (5): 723-737 DOI: 10.7536/PC180902 Previous Articles   Next Articles

Application of Mn-Based Catalysts for the Catalytic Combustion of Diesel Soot

Maozhong Chen1, Lanyi Wang1,2, Xuehua Yu1,**(), Zhen Zhao1,2,**()   

  1. 1. Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, China
    2. State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
  • Received: Online: Published:
  • Contact: Xuehua Yu, Zhen Zhao
  • About author:
    ** E-mail: (Xuehua Yu);
  • Supported by:
    National Natural Science Foundation of China(21603149); National Natural Science Foundation of China(21761162016); Liaoning Province Doctor Startup Fund(201601150); Liaoning Province Colleges and Universities Innovative Talents Support Plan(LR2016029); Program of Excellent Talents in University(51600208); Engineering Technology Research Center of Catalysis for Energy and Environment, the Major Platform for Science and Technology of the Universities in Liaoning Province
Richhtml ( 23 ) PDF ( 731 ) Cited
Export

EndNote

Ris

BibTeX

Soot particles from diesel engines, which cause serious environmental pollution and make great harm to human health, have attracted extensive attention. At present, catalytic purification technology is one of the most effective and widely used technologies for controlling emissions of soot particles. The development of catalysts with excellent performance is the most critical factor for catalytic purification technology. In this paper, the research progress of manganese-based catalysts for soot combustion are summarized. The manganese-based catalysts, including single-component manganese-based catalysts, manganese-based composite oxide catalysts, and manganese-based fixed oxides catalysts(i.e. perovskite-type, spinel-type, and hydrotalcite-type manganese-based catalysts), are detailedly introduced. Meanwhile, the research progress of manganese-based catalysts for the simultaneous removal of soot particles and NOx is briefly described. At last, the existing problems of manganese-based catalysts for catalyzing soot combustion and the prospect of manganese-based catalysts are proposed.

Fig. 1 SEM images of α-Mn2O3 catalyst with different morphology[44](A,B: α-Mn2O3-cubic; C,D: α-Mn2O3-truncated octahedral; E,F: α-Mn2O3-octahedral)
Fig. 2 Schematic representation of the preparation process for 3DOM Mn2O3 with nanoporous walls-supported Pt nanoparticle catalysts[67]
Fig. 3 SEM and TEM images of Mn2O3 and Pt/Mn2O3[67](A,B: TEM of Pt/Mn2O3; C: SEM of Mn2O3; D: SEM of Pt/Mn2O3; E,F: HRTEM of Pt/Mn2O3)
Fig. 4 SEM images of 3DOM MnxCe1-xOδ and 3 wt% Pt/Mn0.5Ce0.5Oδ catalysts[68](A:CeO2,B:Mn0.1Ce0.9Oδ,C:Mn0.3Ce0.7Oδ,D:Mn0.5Ce0.5Oδ,E:Mn0.7Ce0.3Oδ,F:Mn0.9Ce0.1Oδ,G:MnOx,H:3 wt% Pt/Mn0.5Ce0.5Oδ)
Fig. 5 Reaction mechanism of 3DOM Ce0.8Mn0.1Zr0.1O2 catalyst for soot combustion[69]
Fig. 6 Active oxygen mechanism and NO2-assisted mechanism in soot/NO/O2 combustion[71]
Fig. 7 Schematic drawing for the preparation process of the sample CuMn-HBeta[72]
Fig. 8 SEM images of α-MnO2 and Cu5Co5-MnO2 catalysts[75](A,B: α-MnO2; C,D: Cu5Co5-MnO2)
Fig. 9 SEM images and reaction mechanisms for soot combustion of 3DOM K-OMS-2/SiO2 [79](A: SiO2; B: K-OMS-2/SiO2-10; C: K-OMS-2/SiO2-20; D: K-OMS-2/SiO2-30; E: K-OMS-2/SiO2-40; F: K-OMS-2/SiO2-50; G: K-OMS-2/SiO2-60; H: K-OMS-2/SiO2-70; I: Reaction mechanisms)
Fig. 10 SEM and TEM images of K-Mn/3DOM La0.8Ce0.2FeO3[97](A,E: 3DOM La0.8Ce0.2FeO3; B,F: Mn/3DOM La0.8Ce0.2FeO3; C,G: K-Mn/3DOM La0.8Ce0.2FeO3; D,H: K/3DOM La0.8Ce0.2FeO3)
Fig. 11 Typical TEM images(A: Cu2Mn1; C: Cu1Mn1, E: Cu1Mn2), and SEM images(B: Cu2Mn1; D: Cu1Mn1; F: Cu1Mn2) [100]
Fig. 12 Schematic illustrations of the possible combined catalytic mechanism in Cu1.5Mn1.5O4 catalyst[100](A: Active oxygen mechanism; B: NO-aided oxidation mechanism; C: formation of NO2 in the NO-aided oxidation mechanism)
Fig. 13 Schematic illustration of NOx-assisted soot combustion[115].(A: Reaction mechanisms; B: Reaction process)
[1]
刘志明(Liu Z M), 郝郑平(Hao Z P), 沈迪新(Shen D X), 陈宏德(Chen H D), 田群(Tian Q) . 环境工程学报 (Chin. J. Env. Eng.), 2000,1(5):78.
[2]
Mishra A, Prasad R . Clean Technol. Environ. Policy, 2017,19(3):1.
[3]
Wang J G, Cheng L, An W, Xu J L, Men Y . Catal. Sci. Technol., 2016,6(19):7342.
[4]
Zhao Y X, Wen Z T, Huang Y T, Duan X P, Cao Y N, Ye L M, Jiang L L, Yuan Y Z . Catal. Commun., 2018,111:26.
[5]
Wang L, Fang S Q, Feng N J, Wang H, Guan G F . Chem. Eng. J., 2016,293:68.
[6]
Susana Q D, Javier G M, Avelina G G . RSC Adv., 2015,5(22):17018.
[7]
Wei Y C, Zhao Z, Liu J, Xu C M, Jiang G Y, Duan A J . Small, 2013,9(23):3957. https://www.ncbi.nlm.nih.gov/pubmed/23794498

doi: 10.1002/smll.201301027 pmid: 23794498
[8]
Wang H L, Jin B F, Wang H B, Ma N N, Liu W, Weng D, Wu X D, Liu S . Appl. Catal. B: Environ., 2018,237:251.
[9]
Wei Y C, Zhao Z, Liu J, Liu S T, Xu C M, Duan A J, Jiang G Y . J. Catal., 2014,317:62.
[10]
Mukherjee D, Reddy B M . Catal. Today, 2018,309:227.
[11]
Abdullah A Z, Abdullah H, Bhatia S . Catal. Commun., 2008,9(6):1196.
[12]
Liu T Z, Li Q, Xin Y, Zhang Z L, Tang X F, Zheng L R, Gao P X . Appl. Catal. B: Environ., 2018,232:108.
[13]
Hernández-Giméncz A M, dos Santo Xavier L P, Bueno-López A . Appl. Catal. A: Gen., 2013,100:462.
[14]
Alcalde-Santiago V, Davó-Quiñonero A, Lozano-Castelló D, Bueno-López A . Appl. Catal. B: Environ., 2018,234:187.
[15]
Shao W, Wang Z P, Zhang X M, Wang L G, Ma Z M, Li Q, Zhang Z L . Catal. Lett, 2016,146(8):1397.
[16]
Cao C M, Xing L L, Yang Y X, Tian Y, Ding T, Zhang J, Hu T D, Zheng L R, Li X G . Appl. Surf. Sci., 2017,406:245.
[17]
Guo X, Meng M, Dai F F, Li Q, Zhang Z L, Jiang Z, Zhang S, Huang Y Y . Appl. Catal. B: Environ., 2013,142(10):278.
[18]
Shen Y F, Zerger R P, Deguzman R N, Suib S L, McCurdy L, Potter D I, O’Young C L . Science, 1993,260(5107):511. https://www.ncbi.nlm.nih.gov/pubmed/17830429

doi: 10.1126/science.260.5107.511 pmid: 17830429
[19]
Post J E . Proc. Acad. Sci. U. S. A., 1999,96(7):3447.
[20]
Wei W F, Cui X W, Chen W X, Ivey D G . Chem. Soc. Rev., 2011,40(3):1697. https://www.ncbi.nlm.nih.gov/pubmed/21173973

doi: 10.1039/c0cs00127a pmid: 21173973
[21]
Thackeray M M, Johnson C S, Vaughey J T, Li N , J. Mater. Chem., 2005,15(23):2257.
[22]
Zhang H, Cao G P, Wang Z Y, Yang Y S, Shi Z J, Gu Z N . Nano Lett., 2008,8(9):2664. https://www.ncbi.nlm.nih.gov/pubmed/18715042

doi: 10.1021/nl800925j pmid: 18715042
[23]
张桂臻(Zhang G Z), 赵震(Zhao Z), 陈胜利(Chen S L), 董鹏(Dong P) . 化学进展 (Prog. Chem.), 2009,21(5):948.
[24]
白莹(Bai Y), 李雨(Li Y), 仲云霞(Zhong Y X), 陈实(Chen S), 吴锋(Wu F), 吴川(Wu C) . 化学进展 (Prog. Chem.), 2014,26(2):259.
[25]
Lee S W, Kim J, Chen S, Hammond P T, Shao H Y . ACS Nano, 2010,4(7):3889. https://www.ncbi.nlm.nih.gov/pubmed/20552996

doi: 10.1021/nn100681d pmid: 20552996
[26]
Ji L, Sreekanth P M, Smirniotis P G, Thiel S W, Pinto N G . Energy Fuels, 2008,22(4):2299.
[27]
Xu Z, Xie J K, Xu H M, Chen W M, Yan N Q . Energy Fuels, 2015,29(10):6187.
[28]
Li J H, Chang H Z, Ma L, Hao J M, Yang R T . Catal. Today, 2011,175(1):147.
[29]
Liu G, Chen L, Yu J H, Feng N J, Meng J, Fang F, Wang L, Wan H, Guan G F . Appl. Catal. A: Gen., 2018,568:157.
[30]
Ji F, Men Y, Wang J G, Sun Y L, Wang Z D, Zhao B, Tao X T, Xu G J . Appl. Catal. B: Environ., 2019,242:227.
[31]
Lin X T, Li S J, He H, Wu Z, Wu J L, Chen L M, Ye D Q, Fu M L . Appl. Catal. B: Environ., 2018,223:91.
[32]
Jiao F, Frei H . Cheminform, 2011,42(37):1018.
[33]
Zhang R D, Yang W, Lou N, Li P X, Li Z G, Chen B H . Appl. Catal. B: Environ., 2014,146(3):94.
[34]
Xing L L, Yang Y X, Cao C M, Zhao D Y, Gao Z N, Ren W, Tian Y, Ding T, Li X G . ACS Sustain. Chem. Eng., 2018, doi: 10.1021/acssuschemeng.8b03645.
[35]
Yu X H, He J H, Wang D H, Hu Y C, Tian H, He Z C . J. Phys. Chem., 2012,116(1):851.
[36]
Yang M Q, He J H . RSC Adv., 2017,8(1):22. http://xlink.rsc.org/?DOI=C7RA11427C

doi: 10.1039/C7RA11427C
[37]
Kim S C, Shim W G . Appl. Catal. B: Environ., 2010,98(3):180. https://linkinghub.elsevier.com/retrieve/pii/S0926337310002365

doi: 10.1016/j.apcatb.2010.05.027
[38]
Xu H M, Qu Z, Zong C X, Quan F Q, Mei J, Yan N Q . Appl. Catal. B: Environ., 2016,186:30. https://linkinghub.elsevier.com/retrieve/pii/S092633731530326X

doi: 10.1016/j.apcatb.2015.12.042
[39]
Chen S G, Song W Q, Lin H J, Wang S B, Biswas S, Mollahosseini M, Kuo C H, Gao P X, Suib S L . ACS Appl., Mate. Interfaces, 2016,8(12):7834. https://www.ncbi.nlm.nih.gov/pubmed/26954301

doi: 10.1021/acsami.6b00578 pmid: 26954301
[40]
Kapteijn F, Singoredjo L, Andreini A, MouhJn J A . Cheminform, 1994,3(2/3):173.
[41]
Frey K, Iablokov V, Sáfrán G, Osán J, Sajó L, Szukiewicz R, Chenakin S, Kruse N . J. Catal., 2012,287(3):30. https://linkinghub.elsevier.com/retrieve/pii/S0021951711003836

doi: 10.1016/j.jcat.2011.11.014
[42]
Smirniotis P G, Sreekanth P M, Peña D A, Jenkins R G . Ind. Eng. Chem. Res., 2006,45(19):6436. https://pubs.acs.org/doi/10.1021/ie060484t

doi: 10.1021/ie060484t
[43]
Luo J, Zhang Q H, Garciamartinez J, Suib S L . J. Am. Chem. Soc., 2008,130(10):3198. https://www.ncbi.nlm.nih.gov/pubmed/18271585

doi: 10.1021/ja077706e pmid: 18271585
[44]
Cheng L, Men Y, Wang J G, Wang H, An W, Wang Y Q, Duan Z C, Liu J . Appl. Catal. B: Environ, 2017,204:374. https://linkinghub.elsevier.com/retrieve/pii/S0926337316309080

doi: 10.1016/j.apcatb.2016.11.041
[45]
Dai F F, Yu Y F, Meng M, Zhang J, Zheng L L, Hu T D . Catal. Lett., 2014,144(7):1210. http://link.springer.com/10.1007/s10562-014-1268-7

doi: 10.1007/s10562-014-1268-7
[46]
Wagloehner S, Nitzer N M, Kureti S . Chem. Eng. J., 2015,259:492. https://linkinghub.elsevier.com/retrieve/pii/S1385894714010754

doi: 10.1016/j.cej.2014.08.021
[47]
Anantharaman A P, Dasari H P, Lee J H, Dasari H, Babu G U B . Catal. Lett., 2017,147(12):3004. http://link.springer.com/10.1007/s10562-017-2181-7

doi: 10.1007/s10562-017-2181-7
[48]
Ranji-Burachaloo H, Masoomi-Godarzi S, Khodadadi A A, Mortazavi Y . Appl. Catal. B: Environ., 2016,182:74. https://linkinghub.elsevier.com/retrieve/pii/S0926337315301454

doi: 10.1016/j.apcatb.2015.09.019
[49]
Wang S B, Haynes B S . Catal. Commun., 2003,4(11):591. https://linkinghub.elsevier.com/retrieve/pii/S1566736703001717

doi: 10.1016/j.catcom.2003.09.002
[50]
Russo N, Fino D, Saracco G, Specchia V . J. Catal., 2005,229(2):459. https://linkinghub.elsevier.com/retrieve/pii/S0021951704005585

doi: 10.1016/j.jcat.2004.11.025
[51]
Suárez-Vázquez S, Cruz-López A, Molina-Guerrero C . Catal., 2018,8(2):71.
[52]
Ren T Z, Xu P B, Deng Q F, Yuan Z Y . React. Kinet. Mech. Catal., 2013,110(2):405. http://link.springer.com/10.1007/s11144-013-0603-0

doi: 10.1007/s11144-013-0603-0
[53]
Liu S, Wu X D, Weng D, Ran R . J. Rare Earths, 2015,33(6):567. https://linkinghub.elsevier.com/retrieve/pii/S1002072114604579

doi: 10.1016/S1002-0721(14)60457-9
[54]
Jampaiah D, Venkataswamy P, Tur K M, Ippolito S J, Bhargava S K, Reddy B M . Z. Anorg. Allg. Chem., 2015,641(6):1141. http://doi.wiley.com/10.1002/zaac.v641.6

doi: 10.1002/zaac.v641.6
[55]
Zhao H, Zhou X X, Wang M, Xie Z G, Chen H R, Shi J L . RSC Adv., 2017,7(6):3233. http://xlink.rsc.org/?DOI=C6RA25738K

doi: 10.1039/C6RA25738K
[56]
He H, Lin X T, Li S J, Wu Z, Gao J H, William W, Ye D Q, Fu M L . Appl. Catal. B: Environ., 2018,223:134. https://linkinghub.elsevier.com/retrieve/pii/S0926337317308238

doi: 10.1016/j.apcatb.2017.08.084
[57]
Wu X D, Lin F, Xu H B, Duan W . Appl. Catal. B: Environ., 2010,96(1/2):101. https://linkinghub.elsevier.com/retrieve/pii/S0926337310000627

doi: 10.1016/j.apcatb.2010.02.006
[58]
Venkataswamy P, Jampaiah D, Rao K N, Reddy B M . Appl. Catal. A: Gene., 2014,488:1. https://www.ncbi.nlm.nih.gov/pubmed/11163787

doi: 10.1016/s0014-5793(00)02405-4 pmid: 11163787
[59]
Zhou Y, Xu C J, Sheng Y Q, Zhu Q L, Chen Y F, Lu H F . RSC Adv., 2015,5(111):91734. http://xlink.rsc.org/?DOI=C5RA17328K

doi: 10.1039/C5RA17328K
[60]
Gao Y X, Wu X D, Liu S, Weng D, Ran R . RSC Adv., 2016,6(62):57033. http://xlink.rsc.org/?DOI=C6RA09241A

doi: 10.1039/C6RA09241A
[61]
Mukherjee D, Venkataswamy P, Devaiah D, Rangaswamy A M, Reddy B . Catal. Sci. Technol., 2017,7:3045.
[62]
Wu X D, Lee H R, Liu S, Weng D . Ind. Eng. Chem. Res., 2013,52(2):716. https://pubs.acs.org/doi/10.1021/ie301838v

doi: 10.1021/ie301838v
[63]
Gao Y X, Wu X D, Liu S, Weng D, Zhang H W, Ran R . Catal. Today, 2015,253:83. https://linkinghub.elsevier.com/retrieve/pii/S092058611400830X

doi: 10.1016/j.cattod.2014.11.032
[64]
Zhang H L, Wang J L, Cao Y, Wang Y J, Gong M C, Chen Y Q . Chin. J. Catal., 2015,36(8):1333.
[65]
Arandiyan H, Dai H X, Ji K, Sun H Y, Li J H . ACS Catal., 2016,6(1):237.
[66]
Tan J B, Wei Y C, Sun Y Q, Liu J, Zhao Z, Song W Y, Li J M, Zhang X . J. Ind. Eng. Chem., 2018,63:84.
[67]
Wei Y C, Zhao Z, Li T, Liu J, Duan A J, Jiang G Y . Appl. Catal. B: Environ, 2014,146(3):57.
[68]
Yu X H, Li J M, Wei Y C, Zhao Z, Liu J, Jin B F, Duan A J, Jiang G Y . Ind. Eng. Chem. Res., 2012,53(23):9653.
[69]
Cheng Y, Liu J, Zhao Z, Song W Y, Wei Y C . Chem. Eng. Sci., 2017,167:219.
[70]
Tang Q, Du J, Xie B, Yang Y, Yu W C, Tao C Y . J. Rare Earths, 2017,36:64.
[71]
Zhu H J, Xu J, Yi C Y G, Wang Z P, Gao Y B, Liu W, Yin H N . J. Colloid Interface Sci., 2017,508:1. https://www.ncbi.nlm.nih.gov/pubmed/28810164

doi: 10.1016/j.jcis.2017.07.114 pmid: 28810164
[72]
Zhou X X, Chen H R, Zhang G B, Wang J, Xie Z G, Hua Z L, Zhang L X, Shi J L . J. Mater. Chem. A, 2015,3(18):9745.
[73]
Liang Q, Wu X D, Weng D, Xu H B . Catal. Today, 2008,139(1/2):113.
[74]
Rao B G, Jampaiah D, Venkataswamy P M, Reddy B M . ChemistrySelect, 2016,1(21):6681.
[75]
Jampaiah D, Velisoju V K, Venkataswamy P, Nafady A, Mahipal R B, Bhargava S K . ACS Appl. Mater. Inter., 2017,9(38):32652. https://www.ncbi.nlm.nih.gov/pubmed/28862428

doi: 10.1021/acsami.7b07656 pmid: 28862428
[76]
梁鹏(Liang P), 张桂臻(Zhang G Z), 王季秋(Wang J Q), 刘坚(Liu J), 赵震(Zhao Z) . 环境工程学报 (Chin. J. Environ. Eng.), 2008,2(5):577.
[77]
Yu X H, Zhao Z, Wei Y C, Liu J, Li J M, Duan A J, Jiang G Y . Chin. J. Catal., 2015,36(11):1957.
[78]
Yu X H, Wang L Y, Zhao Z, Fan X Q, Chen M Z, Wei Y C, Liu J . ChemistrySelect, 2017,2:10176.
[79]
Yu X H, Zhao Z, Wei Y C, Liu J . Sci. Rep., 2017,7:43894. https://www.ncbi.nlm.nih.gov/pubmed/28443610

doi: 10.1038/srep43894 pmid: 28443610
[80]
Jakubek T, Kaspera W, Legutko P, Stelmachowski P, Kotarba A . Top. Catal., 2016,59(10/12):1083.
[81]
Becerra M E, Arias N P, Giraldo O H, López Suárez F E, Illán Gómez M J, Bueno López A . Appl. Catal. B: Environ., 2011,102(1/2):260.
[82]
Zhao H, Zhou X X, Huang W M, Pan L Y, Wang M, Li Q R, Shi J L, Chen H R . ChemCatChem, 2017,10:1455.
[83]
Libby W F . Sicence, 1971,171:499.
[84]
Voorhoeve R J H, Remeika J P, Freeland P E . Sicence, 1972,177:353.
[85]
于学华(Yu X H), 迟克彬(Chi K B), 王斓懿(Wang L Y), 赵震(Zhao Z), 韦岳长(Wei Y C), 刘坚(Liu J) . 中国稀土学报 (J. Rare Earths), 2016,34(6):693.
[86]
王虹(Wang H), 赵震(Zhao Z), 徐春明(Xu C M) . 催化学报 (Chin. J. Catal.), 2008,29(7):649.
[87]
Wang H, Zhao Z, Xu C M, Liu J . Catal. Lett., 2005,102(3/4):251. http://link.springer.com/10.1007/s10562-005-5864-4

doi: 10.1007/s10562-005-5864-4
[88]
Wang H, Zhao Z, Xu C M, Liu J, Lu Z X . Chin. Sci. Bull., 2005,50(14):1440.
[89]
Wang H, Liu J, Zhao Z, Wei Y C, Xu C M . Catal. Today, 2012,184(1):288.
[90]
Peng X S, Lin H, Shang G W F, Zhen H . Chem. Eng. Technol., 2010,30(1):99.
[91]
Wu X D, Ran R, Duan W . Catal. Lett., 2009,131(3/4):494.
[92]
Torregrosa-Rivero V, Albaladejo-Fuentes V, Sánchez-Adsuar M S, Illán-Gómez M J . RSC Adv., 2017,7(56):35228.
[93]
Wang K, Qian L, Zhang L, Liu H R, Yan Z F . Catal. Today, 2010,158(3/4):423.
[94]
Megarajan S K, Rayalu S S, Nishibori M, Teraoka Y, Labhsetwar N K . ACS Catal., 2015,5(1):1093.
[95]
Zheng J X, Liu J, Zhao Z, Xu J F, Duan A J, Jiang G Y . Catal. Today, 2012,191(1):146.
[96]
Feng N J, Meng J, Wu Y, Chen C, Wang L, Gao L, Wan H, Guan G F . Catal. Sci. Technol., 2016,6:2930.
[97]
Feng N J, Chen C, Meng J, Liu G, Fang F, Wang L, Wan H, Guan G F . Appl. Surf. Sci., 2016,399:114.
[98]
Luo Y, Lu T L, Zhang Y X, Yan L Q, Mao S, Xie J Y . J. Alloy. Compd., 2017,703:289.
[99]
刘坚(Liu J), 赵震(Zhao Z), 徐春明(Xu C M), 王虹(Wang H), 段爱军(Duan A J) . 无机化学学报 (Chin. J. Inorg. Chem.), 2005,21(9):1306.
[100]
Zhao H, Zhou X X, Pan L Y, Wang M, Chen H R, Shi J L . RSC Adv., 2017,7(33):20451.
[101]
Legutko P, Kaspera W, Jakubek T, Stelmachowski P, Kotarba A . Top. Catal., 2013,56(9/10):745.
[102]
Wang J G, Yang G Y, Cheng L, Shin E W, Men Y . Catal. Sci. Technol., 2015,5(9):4594.
[103]
Zhao S Z, Yi H H, Tang X L, Kang D J, Gao F Y, Wang J G, Huang Y H, Yang Z Y . J. Hazard. Mater., 2017,344:797. https://www.ncbi.nlm.nih.gov/pubmed/29172166

doi: 10.1016/j.jhazmat.2017.11.031 pmid: 29172166
[104]
Li Q, Meng M, Xian H, Li X G, Xie Y N, Hu T D, Zhang J . Environ. Sci. Technol., 2010,44(12):4747. https://www.ncbi.nlm.nih.gov/pubmed/20491437

doi: 10.1021/es9033638 pmid: 20491437
[105]
Li Q, Meng M, Dai F F, Zha Y Q, Xie Y N, Hu T D, Zhang J . Chem. Eng. J., 2012,184(184):106.
[106]
Li Q, Wang X, Chang W, Chen H, Zhang Z L . J. Rare Earths, 2014,32(2):176.
[107]
Guo L, Xian H, Li Q F, Chen D, Tan Y S, Zhang J, Zheng L R, Li X G . J. Hazard. Mater., 2013,260(1):543. https://linkinghub.elsevier.com/retrieve/pii/S0304389413004135

doi: 10.1016/j.jhazmat.2013.06.013
[108]
Gou L R, Gou L, Zhao Y D, Gao Z N, Tian Y, Ding T, Zhang J, Zheng L R, Li X G . Catal. Today, 2017,297:27.
[109]
Dhal G C, Mohan D, Prasad R . Catal. Sci. Technol., 2017,7(9):1803.
[110]
Dhal G C, Dey S, Mohan D, Prasad R . Catal. Rev. Sci. Eng., 2018,60(3):1.
[111]
王艳(Wang Y), 李兆强(Li Z Q) . 稀土 (Chin. Rare Earths), 2015,36(5):133.
[112]
Yang R Y, Gao Y S, Wang J Y, Wang Q . Dalton Transa., 2014,43(27):10317. https://www.ncbi.nlm.nih.gov/pubmed/24492318

doi: 10.1039/c3dt52896k pmid: 24492318
[113]
朱荣淑(Zhu R S), 郭明新(Guo M X), 欧阳锋(Ouyang F) . 物理化学学报 (Acta. Phys. Chim. Sin.), 2009,25(1):131.
[114]
Feng Z J, Liu Q H, Chen Y J, Zhao P F, Peng Q, Cao K, Chen R, Shen M Q, Shan B . Catal. Sci. Technol., 2017,7:838.
[115]
Chen Y J, Du C, Lang Y, Jia L W, Chen R, Shan B . Catal. Sci. Technol., 2018,8:5955.
[116]
Zhang H, Gu F N, Liu Q, Gao J J, Jia L H, Zhu T Y, Chen Y F, Zhong Z Y, Su F B . RSC Adv., 2014,4:14879.
[117]
Gao Y X, Wu X D, Nord R, Härelind H, Weng D . Catal. Sci. Technol., 2018,8:1621.
[118]
Liu S, Wu X D, Weng D, Li M, Lee H Y . Chem. Eng. J., 2012,203:25.
[119]
Wang K, Qian L, Zhang L, Liu H R, Yan Z F . Catal. Today, 2010,158(3):423.
[120]
Teraoka Y, Kanada K, Kagawa S . Appl. Catal. B: Environ., 2001,34(1):73. https://linkinghub.elsevier.com/retrieve/pii/S0926337301002028

doi: 10.1016/S0926-3373(01)00202-8
[121]
Dhal G C, Dey S, Mohan D, Prasad R . Mater. Discovery, 2017,10:37. https://www.ncbi.nlm.nih.gov/pubmed/19178723

doi: 10.1186/1471-2105-10-37 pmid: 19178723
[122]
Peng X S, Lin H, Shangguan W F, Huang Z . Chem. Eng. Technol., 2007 30(1):99.
[123]
Ma Z, Gao X, Yuan X L, Zhang L, Li Z J . Catal. Commun., 2011,12:817.
[1] Xin Liu, Yongqiang Wang, Fang Liu, Chaocheng Zhao, Huaxin Liu, Lin Shi. Catalytic Combustion of VOCs by Manganese-Based Catalysts [J]. Progress in Chemistry, 2019, 31(8): 1159-1165.
[2] Zhe Liu, Xiaolan Zhang, Ting Cai, Jing Yua, Kunfeng Zhao, Dannong He. Catalytic Oxidation of Formaldehyde over Manganese-Based Catalysts and the Influence of Synergistic Effect [J]. Progress in Chemistry, 2019, 31(2/3): 311-321.
[3] Yanyan Zhu, Zongyang Yue, Wen Bian, Ruilin Liu, Xiaoxun Ma, Xiaodong Wang. The Structure of Hexaaluminate and Application in High-Temperature Reaction [J]. Progress in Chemistry, 2018, 30(12): 1992-2002.
[4] Wang Junwei,Tian Zhijian**,Xu Jinguang,Xu Yunpeng,Xu Zhusheng,Lin Liwu. Progress in Research of the Catalysts for High Temperature Combustion of Methane [J]. Progress in Chemistry, 2003, 15(03): 242-.