中文
Announcement
More
Progress in Chemistry 2019, Vol. 31 Issue (2/3): 442-454 DOI: 10.7536/PC180714 Previous Articles   Next Articles

Rich-Nickel Ternary Layered Oxide LiNi0.8Co0.1Mn0.1O2 Cathode Material

Ze Feng, Dan Sun, Yougen Tang**(), Haiyan Wang**()   

  1. Hunan Provincial Key Laboratory of Chemical Power Sources, Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083,China
  • Received: Online: Published:
  • Contact: Yougen Tang, Haiyan Wang
  • About author:
    ** E-mail: (Yougen Tang);
    (Haiyan Wang)
  • Supported by:
    National Key R&D Program of China(2018YFB0104000); Science and Technology Major Project of Hunan Province(2017GK1040); Science and Technology Major Project of Hunan Province(2017GK5040); Science and Technology Plan Project of Hunan Province(2016TP1007); Science and Technology Plan Project of Hunan Province(2017TP1001); Innovation-Driven Project of Central South University(2016CXS009)
Richhtml ( 51 ) PDF ( 1710 ) Cited
Export

EndNote

Ris

BibTeX

Nickel-rich ternary layered oxide LiNi0.8Co0.1Mn0.1O2 (NCM811) is considered to be one of the most potential cathode materials in the next generation lithium-ion batteries due to its high reversible capacity, environmentally friendly feature and low cost. However, this kind of cathode material is suffering from the poor thermal stability, phase transition during the charge-discharge process and safety issue, which hinders its further practical application. With the deepening of researches and development of fabrication methods, the electrochemical properties of NCM811 have been significantly improved. In this paper, the recent research progress of nickel-rich layered oxide NCM811 cathode material has been reviewed. We mainly focus on the problems and declined mechanisms, synthesis methods, improvement measures and theoretical calculation simulation studies of NCM811, and also make a brief outlook for the future development of nickel-rich ternary layered oxide NCM811.

Table 1 Main performance parameters of commercial cathode materials[7,8,9]
Fig. 1 Cation mixing of different regions in nickel-rich ternary cathode material[14]
Fig. 2 Schematic diagram of phase transitions in ternary material structures results from in situ TR-XRD with MS analysis[19]
Table 2 The results of characterization and calculation in anode after 3000 cycles[57]
Fig. 3 Synthesis process of LixAlO2 and LixTi2O4 coating layers on NCM811 cathode[71]
Fig. 4 Spherical gradient nickel-rich material[17]
Fig. 5 Formation model of SEI layer in polycrystalline and single crystal cathode materials[78]
Fig. 6 Synthesis of single crystal NCM811 material under different fluxes and temperatures[43]
Fig. 7 The structures of the different additives(a) and their linear volt-ampere scanning curves(b)[90]
Fig. 8 The bond strength between different transition metals[16]
Fig. 9 The formation energy of defective sites for structures of un-doped, Al-and Mg-doped in the case of(a) the oxygen vacancy(VO),(b) excess Ni(Ni Li), and(c) Li/Ni exchange(LiNi-NiLi)[96]
[1]
Etacheri V, Marom R, Ran E, Salitra G, Aurbach D . Energy Environ. Sci., 2011,4:3243. https://www.ncbi.nlm.nih.gov/pubmed/30560537

doi: 10.1007/s11356-018-3915-9 pmid: 30560537
[2]
孙艳霞(Sun Y X), 周园(Zhou Y), 申月(Shen Y), 张丽娟(Zhang L J) . 化学通报 (Chemistry Bulletin), 2017,80:34.
[3]
夏青(Xia Q), 赵俊豪(Zhao J H), 王凯(Wang K), 李昇(Li S), 郭冰(Guo B), 田院(Tian Y), 杨则恒(Yang Z H), 张卫新(Zhang W X) . 化工学报 (J. Chem. Ind. Eng., 2017,68:1239.
[4]
Luo J, Xia Y . Adv. Funct. Mater., 2010,17:3877.
[5]
Watanabe S, Kinoshita M, Nakura K . J. Power Sources, 2014,247:412.
[6]
严武渭(Yan W W), 柳永宁(Liu Y N), 崇少坤(Chong S K), 周亚萍(Zhou Y P), 刘建国(Liu J G), 邹志刚(Zou Z G) . 化学进展 (Process in Chemistry), 2017,29(2/3):198.
[7]
Wilson J R, Cronin J S, Barnett S A, Harris S J . J. Power Sources, 2011,196:3443.
[8]
刘全兵(Liu Q B) . 华南理工大学博士论文(Doctoral Dissertation of South China University of Technology), 2012.
[9]
赵陈浩(Zhao C H) . 山东大学博士论文(Doctoral Dissertation of Shandong University), 2014.
[10]
李想(Li X), 谢正伟(Xie Z W), 吴锐(Wu R), 瞿美臻(Qu M Z) . 电池 (Battery Bimonthly), 2015,45(1):54.
[11]
王竞鹏(Wang J P) . 哈尔滨工业大学博士论文(Doctoral Dissertation of Harbin Institute of Technology), 2016.
[12]
李欢(Li H), 江奇(Jiang Q), 邱家欣(Qiu J X), 刘青青(Liu Q Q), 高艺珂(Gao Y K), 卢晓英(Lu X Y), 胡爱琳(Hu A L) . 高等学校化学学报 (Chem. J. Chin. Univ.), 2018,39:1267.
[13]
李想(Li X), 葛武杰(Ge W J), 王昊(Wang H), 瞿美臻(Qu M Z) . 无机材料学报 (Chin. J. Inorg. Chem.), 2017,32(2):113.
[14]
Kim H, Kim M G, Jeong H Y, Nam H, Cho J . Nano Lett., 2015,15:2111. https://www.ncbi.nlm.nih.gov/pubmed/25668708

doi: 10.1021/acs.nanolett.5b00045 pmid: 25668708
[15]
Yan P, Zheng J, Lv D, Wei Y, Zheng J, Wang Z, Kuppan S, Yu J, Luo L, Edwards D . Chem. Mater., 2015,27:5393.
[16]
Liang C, Kong F, Longo R C, Santosh K C, Kim J S, Jeon S H, Choi S A, Cho K . J. Phys. Chem. C, 2016,120:6383.
[17]
Sun Y K, Chen Z, Noh H J, Lee D J, Jung H G, Ren Y, Wang S, Yoon C S, Myung S T, Amine K . Nat.Mater., 2012,11:942. https://www.ncbi.nlm.nih.gov/pubmed/23042415

doi: 10.1038/nmat3435 pmid: 23042415
[18]
Zhao J, Zhang W, Huq A, Misture S T, Zhang B, Guo S, Wu L, Zhu Y, Chen Z, Amine K . Adv. Energy. Mater., 2017,7:1601266.
[19]
Bak S M, Nam K W, Chang W, Yu X, Hu E, Hwang S, Stach E A, Kim K B, Chung K Y, Yang X Q . Chem. Mater., 2013,25:337.
[20]
Li J, Downie L E, Ma L, Qiu W, Dahn J R . J. Electrochem. Soc., 2015,162:1401.
[21]
Yang C, Shao R, Mi Y, Shen L, Zhao B, Wang Q, Wu K, Lui W, Gao P, Zhou H . J. Power Sources, 2018,376:200.
[22]
Robert R, Bünzli C, Berg E J, Novák P . Chem. Mater., 2015,27:526.
[23]
Hu G, Zhang M, Wu L, Peng Z, Du K, Cao Y . J. Alloys Compd., 2017,690:589.
[24]
Wang L, Mu D, Wu B, Yang G, Gai L, Liu Q, Fan Y, Peng Y, Wu F . Electrochim. Acta, 2016,222:806.
[25]
Xu S, Du C, Xu X, Han G, Zuo P, Cheng X, Ma Y, Yin G . Electrochim. Acta, 2017,248:534.
[26]
Berkes B B, Schiele A, Sommer H, Brezesinski T, Janek J . J. Solid State Electrochem., 2016,20:1.
[27]
Wang Y, Jiang J, Dahn J R . Electrochem. Commun., 2007,9:2534.
[28]
Kim Y . Phys. Chem. Chem. Phys., 2013,15:6400. https://www.ncbi.nlm.nih.gov/pubmed/23525240

doi: 10.1039/c3cp50567g pmid: 23525240
[29]
Yan P, Zheng J, Chen T, Luo L, Jiang Y, Wang K, Sui M, Zhang J G, Zhang S, Wang C . Nature Communications, 2018,9:2437. https://www.ncbi.nlm.nih.gov/pubmed/29934582

doi: 10.1038/s41467-018-04862-w pmid: 29934582
[30]
Lee E J, Chen Z, Noh H J, Nam S C, Kang S, Kim D H, Amine K, Sun Y K . Nano Lett., 2014,14:4873. https://www.ncbi.nlm.nih.gov/pubmed/24960550

doi: 10.1021/nl5022859 pmid: 24960550
[31]
Yan P, Zheng J, Liu J, Wang B, Cheng X, Zhang Y, Sun X, Wang C, Zhang J G . Nature Energy, 2018,3:600.
[32]
Kim J H, Park K J, Kim S J, Yoon C S, Sun Y K . J. Mater. Chem. A, 2019.
[33]
Taheri P, Yazdanpour M, Bahrami M . J. Power Sources, 2013,243:280.
[34]
Kim N Y, Yim T, Song J H, Yu J S, Lee Z . J. Power Sources, 2016,307:641.
[35]
Peng P, Jiang F . International Journal of Heat & Mass Transfer, 2016,103:1008.
[36]
Macneil D D, Lu Z, Chen Z, Dahn J R . J. Power Sources, 2002,108:8.
[37]
王连邦(Wang L B), 姚金翰(Yao J H), 王剑波(Wang J B) . CN 102983329 A, 2013.
[38]
Kim J H, Yi J H, Ko Y N, Kang Y C . Mater. Chem. Phys., 2012,134:254.
[39]
Kimijima T, Zettsu N, Teshima K . Cryst. Growth Des., 2016,16:2618.
[40]
Shi Y, Zhang M, Fang C, Meng Y S . J. Power Sources, 2018,394:114.
[41]
侯倩(Hou Q), 李春雷(Li C L), 崔孝玲(Cui X L), 李翔飞(Li X F), 张宇(Zhang Y) . 化工新型材料 (New Chem. Mater.), 2017: 23.
[42]
邵奕嘉(Shao Y J), 黄斌(Huang B), 刘全兵(Liu Q B), 廖世军(Liao S J) . 化学进展 (Process in Chemistry), 2018,30(4):410.
[43]
Kim Y . ACS Appl. Mater. Interfaces., 2012,4:2329. https://www.ncbi.nlm.nih.gov/pubmed/22497580

doi: 10.1021/am300386j pmid: 22497580
[44]
Li T, Li X, Wang Z, Guo H . J. Power Sources, 2017,342:495.
[45]
Zhang C, Qi J, Zhao H, Hou H, Deng B, Tao S, Su X, Wang Z, Qian B, Chu W . Mater. Lett., 2017,201:1.
[46]
Zheng X, Li X, Zhang B, Wang Z, Guo H, Huang Z, Yan G, Wang D, Xu Y . Ceram. Int., 2016,42:644.
[47]
Meng K, Wang Z, Guo H, Li X . Electrochim. Acta, 2017,234:99.
[48]
曾跃武(Zeng Y W), 黄连友(Huang L Y) . CN 102544474 A, 2012.
[49]
Li X Q, Xiong X H, Wang Z X, Chen Q Y . T. Nonferr. Metal. Soc., 2014,24:4023.
[50]
Lu H, Zhou H, Svensson A M, Fossdal A, Sheridan E, Lu S, Vullum-Bruer F . Solid State Ionics, 2013,249/250:105.
[51]
Tang Z, Bao J, Du Q, Shao Y, Gao M, Zou B, Chen C . ACS Appl. Mater. Interfaces, 2016,8:34879. https://www.ncbi.nlm.nih.gov/pubmed/27936544

doi: 10.1021/acsami.6b11431 pmid: 27936544
[52]
Chen T, Li X, Wang H, Yan X, Wang L, Deng B, Ge W, Qu M . J. Power Sources, 2018,374:1.
[53]
Luo W, Zhou F, Zhao X, Lu Z, Li X, Dahn J R . Chem. Mater., 2016,22:1164.
[54]
施少君(Shi S J) . 浙江大学博士论文(Doctoral Dissertation of Zhejiang University), 2014.
[55]
朱伟雄(Zhu W X), 李新海(Li X H), 王志兴(Wang Z X), 郭华军(Guo H J) . 中国有色金属学报 (Transactions of Nonferrous Metals Society of China), 2013,23(4):1047.
[56]
Zhang B, Li L, Zheng J . Journal of Alloys & Compounds, 2012,520:190.
[57]
Kimura N, Seki E, Konishi H, Hirano T, Takahashi S, Ueda A, Horiba T . J. Power Sources, 2016,332:187.
[58]
Park K J, Jung H G, Kuo L Y, Kaghazchi P, Yoon C S, Sun Y K . Adv. Energy. Mater., 2018,0:1801202.
[59]
Peng Y, Wang Z, Wang J, Guo H, Xiong X, Li X . Powder Technol., 2013,237:623.
[60]
Wang D, Li X, Wang Z, Guo H, Xu Y, Fan Y, Ru J . Electrochim. Acta, 2016,188:48. https://linkinghub.elsevier.com/retrieve/pii/S0013468615308653

doi: 10.1016/j.electacta.2015.11.093
[61]
Zeng Y, Qiu K, Yang Z, Zhou F, Xia L, Bu Y . Ceram. Int., 2016,42:10433.
[62]
谭潮溥(Tan C F), 黄殿华(Huang D H), 骆宏钧(Luo H J), 杜柯(Du K), 曹雁冰(Cao Y B), 胡国荣(Hu G R) . 无机化学学报 (Chin. J. Inorg. Chem.), 2018,23(4):647.
[63]
Lai Y Q, Xu M, Zhang Z A, Gao C H, Wang P, Yu Z Y . J. Power Sources, 2016,309:20.
[64]
Lee M J, Noh M, Park M H, Jo M, Kim H, Nam H, Cho J . J. Mater. Chem. A, 2015,3:421.
[65]
Li S, Fu X, Zhou J, Han Y, Qi P, Gao X, Feng X, Wang B . J. Mater. Chem. A, 2016,4:5823.
[66]
Xiao Z, Hu C, Song L, Li L, Cao Z, Zhu H, Liu J, Li X, Tang F . Ionics, 2018,24:91. http://link.springer.com/10.1007/s11581-017-2178-7

doi: 10.1007/s11581-017-2178-7
[67]
Lee S H, Chong S Y, Amine K, Sun Y K . J. Power Sources, 2013,234:201. https://linkinghub.elsevier.com/retrieve/pii/S0378775313000827

doi: 10.1016/j.jpowsour.2013.01.045
[68]
Wang J, Du C, Xu X, He X, Yin G, Ma Y, Zuo P, Cheng X, Gao Y . Electrochim. Acta, 2016,192:340.
[69]
Jan S S, Nurgul S, Shi X, Xia H, Pang H . Electrochim. Acta, 2014,149:86.
[70]
Chen Y, Zhang Y, Chen B, Wang Z, Lu C . J. Power Sources, 2014,256:20.
[71]
Li L, Ming X, Qi Y, Chen Z, Song L, Zhang Z, Gao C, Peng W, Yu Z, Lai Y . ACS Appl. Mater. Interfaces, 2016,8:30879. https://www.ncbi.nlm.nih.gov/pubmed/27805812

doi: 10.1021/acsami.6b09197 pmid: 27805812
[72]
Zhao R, Liang J, Huang J, Zeng R, Zhang J, Chen H, Shi G . Journal of Alloys & Compounds, 2017,724:1109.
[73]
Chen S, He T, Su Y, Lu Y, Bao L, Chen L, Zhang Q, Wang J, Chen R, Wu F . ACS Appl. Mater. Interfaces, 2017,9:29732. https://www.ncbi.nlm.nih.gov/pubmed/28799739

doi: 10.1021/acsami.7b08006 pmid: 28799739
[74]
Li Q, Dang R, Chen M, Lee Y, Hu Z, Xiao X . ACS Appl. Mater. Interfaces, 2018,10:17850. https://www.ncbi.nlm.nih.gov/pubmed/29733197

doi: 10.1021/acsami.8b02000 pmid: 29733197
[75]
Xia Y, Zheng J, Wang C, Gu M . Nano Energy, 2018,49:434.
[76]
Du K, Hua C, Tan C, Peng Z, Cao Y, Hu G . J. Power Sources, 2014,263:203.
[77]
Noh H J, Chen Z, Chong S Y, Lu J, Amine K, Sun Y K . Chem. Mater., 2013,25:2109.
[78]
Kim J, Lee H, Cha H, Yoon M, Park M, Cho J . Adv.Energy. Mater, 2017,8:1702028.
[79]
Kan W H, Chen D, Papp J K, Shukla A K, Huq A, Brown C M, Mccloskey B D, Chen G . Chem. Mater., 2018,30:1655.
[80]
唐盛贺(Tang S H), 周汉章(Zhou H Z), 刘更好(Liu G H), 张莹娇(Zhang Y J), 刘伟健(Liu W J), 陈沃林(Chen W L) . 化工新型材料 (New Chem. Mater.), 2017,45(4):139.
[81]
肖建伟(Xiao J W), 刘良彬(Liu L B), 符泽卫(Fu Z W), 李文斌(Li W B), 何兴(He X), 叶尚云(Ye S Y) . 电池工业 (Chinese Battery Industry), 2017,21(2):51.
[82]
Duan J, Wu C, Cao Y, Huang D, Du K, Peng Z, Hu G . J. Alloys Compd., 2017,695:91.
[83]
Li J, Yao R, Cao C . ACS Appl. Mater. Interfaces, 2014,6:5075. https://www.ncbi.nlm.nih.gov/pubmed/24625317

doi: 10.1021/am500215b pmid: 24625317
[84]
Zhou H, Yang Z, Xiao D, Xiao K, Li J . J. Mater. Sci.: Mater. Electron., 2018,29:6648.
[85]
周文超(Zhou W C), 朱学全(Zhu X Q), 姜彬(Jiang B), 杨春容(Yang C R) . CN 105355970 A, 2016.
[86]
Pham H Q, Hwang E H, Kwon Y G, Song S W . J. Power Sources, 2016,323:220.
[87]
邓邦为(Deng B W), 孙大明(Sun D M), 万琦(Wan Q), 王昊(Wang H), 陈滔(Chen T), 李璇(Li X), 瞿美臻(Qu M Z), 彭工厂(Peng G C) . 化学学报 (Acta Chimica Sinica), 2018,76(4):259.
[88]
Lee Y M, Nam K M, Hwang E H, Kwon Y G, Kang D H, Kim S S, Song S W . J. Phys. Chem. C, 2014,118:10631.
[89]
Yim T, Jang S H, Han Y K . J. Power Sources, 2017,372:24.
[90]
Kang K S, Choi S, Song J H, Woo S G, Yong N J, Choi J, Yim T, Yu J S, Kim Y J . J. Power Sources, 2014,253:48. https://linkinghub.elsevier.com/retrieve/pii/S0378775313019927

doi: 10.1016/j.jpowsour.2013.12.024
[91]
Zheng Q, Xing L, Yang X, Li X, Ye C, Wang K, Huang Q, Li W . ACS Appl. Mater. Interfaces, 2018,10:16843. https://www.ncbi.nlm.nih.gov/pubmed/29687987

doi: 10.1021/acsami.8b00913 pmid: 29687987
[92]
夏兰(Xia L), 余林颇(Yu L P), 胡笛(Hu D), 陈政(Chen Z) . 化学学报 (Acta Chimica Sinica), 2017,75(12):1183.
[93]
赵丹妮(Zhao D N), 田芳禺(Tian F Y), 于雅琳(Yu Y L), 张博明(Zhang B M), 蒙邦克(Meng B K), 冯启航(Feng Q H), 杨继萍(Yang J P) . 复合材料学报 (Acta Mater. Compos. Sin.), 2018,35(2):253.
[94]
杨思七(Yang S Q), 张天然(Zhang T R), 陶占良(Tao Z L), 陈军(Chen J) . 化学学报 (Acta Chimica Sinica), 2013,71(7):1029.
[95]
Shi S Q, Gao J, Liu R, Zhao Y, Wu Q, Ju W W, Ouyang C Y, Xiao R J . Chin. Phys. B, 2016,25(1):018212.
[96]
Min K, Seo S W, Song Y Y, Lee H S, Cho E . Physical Chemistry Chemical Physics Pccp, 2017,19:1762. https://www.ncbi.nlm.nih.gov/pubmed/27886291

doi: 10.1039/c6cp06270a pmid: 27886291
[97]
Clark J M, Nishimura S, Yamada A, Islam M S . Angew. Chem. Int. Ed., 2012,51:13149. https://www.ncbi.nlm.nih.gov/pubmed/23154889

doi: 10.1002/anie.201205997 pmid: 23154889
[98]
Jie S, Haimei L, Xu C, G. E D, Wensheng Y, Xue D . Adv. Mater., 2013,25:1125. https://www.ncbi.nlm.nih.gov/pubmed/23161553

doi: 10.1002/adma.201203108 pmid: 23161553
[99]
Koski K J, Wessells C D, Reed B W, Cha J J, Kong D, Cui Y . J. Am. Chem. Soc., 2012,134:13773. https://www.ncbi.nlm.nih.gov/pubmed/22830589

doi: 10.1021/ja304925t pmid: 22830589
[100]
Sun J, Zheng G, Lee H W, Liu N, Wang H, Yao H, Yang W, Cui Y . Nano Lett., 2014,14:4573. https://www.ncbi.nlm.nih.gov/pubmed/25019417

doi: 10.1021/nl501617j pmid: 25019417
[1] Dandan Wang, Zhaoxin Lin, Huijie Gu, Yunhui Li, Hongji Li, Jing Shao. Modification and Application of Bi2MoO6 in Photocatalytic Technology [J]. Progress in Chemistry, 2023, 35(4): 606-619.
[2] Wei Li, Tiangui Liang, Yuanchuang Lin, Weixiong Wu, Song Li. Machine Learning Accelerated High-Throughput Computational Screening of Metal-Organic Frameworks [J]. Progress in Chemistry, 2022, 34(12): 2619-2637.
[3] Ying Yang, Shupeng Ma, Yuan Luo, Feiyu Lin, Liu Zhu, Xueyi Guo. Multidimensional CsPbX3 Inorganic Perovskite Materials: Synthesis and Solar Cells Application [J]. Progress in Chemistry, 2021, 33(5): 779-801.
[4] Ying Yang, Yuan Luo, Shupeng Ma, Congtan Zhu, Liu Zhu, Xueyi Guo. Advances of Electron Transport Materials in Perovskite Solar Cells: Synthesis and Application [J]. Progress in Chemistry, 2021, 33(2): 281-302.
[5] Weijia Zhang, Xueguang Shao, Wensheng Cai. Molecular Simulation of the Antifreeze Mechanism of Antifreeze Proteins [J]. Progress in Chemistry, 2021, 33(10): 1797-1811.
[6] Runtian Wang, Chunli Liu, Zhenbin Chen. Imprinted Composite Membranes [J]. Progress in Chemistry, 2020, 32(7): 989-1002.
[7] Quanchao Zhuang, Zi Yang, Lei Zhang, Yanhua Cui. Research Progress on Diagnosis of Electrochemical Impedance Spectroscopy in Lithium Ion Batteries [J]. Progress in Chemistry, 2020, 32(6): 761-791.
[8] Chen Ni, Di Jiang, Youlin Xu, Wenlai Tang. Application of Viscoelastic Fluid in Passive Particle Manipulation Technologies [J]. Progress in Chemistry, 2020, 32(5): 519-535.
[9] Weiyang Lv, Ji’an Sun, Yuyuan Yao, Miao Du, Qiang Zheng. Morphology Control of Layered Double Hydroxide and Its Application in Water Remediation [J]. Progress in Chemistry, 2020, 32(12): 2049-2063.
[10] Wei Li, Ziyu Yang, Yanglong Hou, Song Gao. Controllable Preparation and Magnetism Control of Two-Dimensional Magnetic Nanomaterials [J]. Progress in Chemistry, 2020, 32(10): 1437-1451.
[11] Jinghao Liu, Xueqian Wu, Yufeng Wu, Jiamei Yu. Computational Study on Adsorption and Separation of C2 and C3 Hydrocarbons by Metal-Organic Frameworks [J]. Progress in Chemistry, 2020, 32(1): 133-144.
[12] Haochuan Chen, Haohao Fu, Xueguang Shao, Wensheng Cai. Importance Sampling Methods and Free Energy Calculations [J]. Progress in Chemistry, 2018, 30(7): 921-931.
[13] Lu Jia, Jianzhong Ma, Dangge Gao, Bin Lv. Layered Double Hydroxides/Polymer Nanocomposites [J]. Progress in Chemistry, 2018, 30(2/3): 295-303.
[14] Xiaofang Wang, Yin Hu, Qifa Pan, Ruilong Yang, Zhong Long, Kezhao Liu. Crystal Structure and Electronic Structure of Uranium Nitrides [J]. Progress in Chemistry, 2018, 30(12): 1803-1818.
[15] Wenhao Yao, Fei Yu, Jie Ma. Preparation of Alginate Composite Gel and Its Application in Water Treatment [J]. Progress in Chemistry, 2018, 30(11): 1722-1733.