中文
Announcement
More
Progress in Chemistry 2019, Vol. 31 Issue (2/3): 283-299 DOI: 10.7536/PC180712 Previous Articles   Next Articles

Functional Nanomaterials Based Suspension Array Technology

Weijie Wu, Yuankui Leng, Mengfei Shen, Wanwan Li**()   

  1. 1. The State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
  • Received: Online: Published:
  • Contact: Wanwan Li
  • About author:
    ** E-mail:
  • Supported by:
    National Natural Science Foundation of China(81371645); National Natural Science Foundation of China(81671782); National Key Research and Development Program of China(2017YFA0205304); Clinical Research Plan of SHDC(16CR3057A); Medicine & Engineering Cross Research Foundation of Shanghai Jiao Tong University(YG2017ZD02)
Richhtml ( 28 ) PDF ( 852 ) Cited
Export

EndNote

Ris

BibTeX

Suspension array or liquid biochips technique based on spectrometrically encoded microspheres plays a prominent role in simultaneously high-throughput multiplexed detection of multiple analytes within a small, single sample volume. It is a quite powerful tool for genes analysis, proteins profiling, disease early diagnosis, treatment monitoring and so on, due to its faster binding kinetics, high-throughput multiplexed detection, high detection sensitivity, and good reproducibility. Commercial suspension array platforms based on organic dye-encoded microspheres show various limitations such as limited encoding capacity, sensitivity, photostability, requirement of instruments with multiple excitation, tedious color compensation processes, etc. Substantial development has been achieved in improving the multiplexed detecting capability, detection sensitivity, and automatic platform of suspension arrays due to the rapid growth of nanotechnology and nanomaterials. In this review, we systematically introduce the recent progress on functional nanomaterials based suspension array technology, including functional nanoparticles-encoded microspheres and their fabrication technologies, design and regulation of suspension arrays. At last, we make a summary of the current challenges and their possible solutions in suspension array technology. We hope that our review on the recent progress, current challenges, possible solutions and the future prospects of suspension array based on encoded microspheres, will help drive the development of suspension array technology and its related fields.

Fig. 1 Schematic illustration of suspension array platform. The target of interest is identified by the barcode signal and quantified by the label signal[2]
Table 1 Comparison of different encoding nanoparticles(encoding methods)
Fig. 2 (a) The most commonly used encoding principle utilizes colors and intensity levels;(b) A 3D encoding method that combines colors, intensity levels, and microsphere sizes[11,12,47]
Fig. 3 Fluorescence spectrum obtained from NaYF4:Yb/Ho/Tm(with different Tm doping amounts) upconversion nanocrystal encoded beads. Both the absolute intensities and relative intensity ratios of different emissions are used for coding purposes[60]
Fig. 4 (a) Eu-LRET(lanthanide-based resonance energy transfer) life-time barcodes;(b) τ-dots barcodes[68,75]
Fig. 5 Supermultiplexed optical barcoding with polyynes.(a) Chemical structures of 20 polyynes with distinct Raman frequencies, which are termed Carbon rainbow.(b) Raman peaks of Carbow in the silent spectral window.(c) Polymer beads are encoded by combinatorial loading of polyynes.(d) Spectral barcoding of polyynes at ten frequencies and three intensities(0, or 1 or 2) with SRS readout [93]
Fig. 6 (a) Suspension assay based on SERS barcode microsphere;(b) Multiplexed detection by using SERS dots as barcode labels;(c) NanoplexTMbiotag[98,99]
Fig. 7 (a) Reflection spectra of the opal photonic crystal beads(PCBs) composed of silica nanoparticles with different sizes;(b) SEM image of opal PCB surface;(c) Digital image of the seven kinds of inverse-opaline PCBs in water;(d) SEM image of the inverse-opaline PCBs surface[35,106]
Table 2 Comparison of different synthesis methods for fluorescent encoded microbeads
Fig. 8 Schematic illustration of the fabrication of nanoparticle-composite microspheres by using microfluidic technique. Uniform single emulsions:(a) a concentration-controlled, flow-focusing(CCFF) device for the preparation of QD barcodes;(b) Lanthanide nanophosphor-encoded microspheres synthesis by using a microfluidic device; Uniform double emulsification:(c) Anisotropic magnetic barcode microspheres;(d) Multicore-encoded microsphere with red, green, and blue opal photonic crystal; cores;(e) Multicore photonic crystal microspheres[46,108,126,130]
Fig. 9 Schematic illustrating the preparation of carboxylated QD barcodes by SPG membrane emulsification-solvent evaporation approach[11]
Fig. 10 Overview of the smartphone device utilizing quantum dot barcodes.(a) Two excitation sources excite the quantum dot barcoded signal and reporter signal respectively, the optical signal is collected by a set of objective and eyepiece lenses, imaged using a smartphone camera;(b) Image of the smartphone device utilizing quantum dot barcodes [191]
[1]
Zhou X F . J. Clin. Lab. Anal., 2010,28:247.
[2]
Leng Y, Sun K, Chen X Y, Li W W . Chem. Soc. Rev., 2015,44:5552. https://www.ncbi.nlm.nih.gov/pubmed/26021602

doi: 10.1039/c4cs00382a pmid: 26021602
[3]
Fultona R. J, McDade R L, Smith P L, Kienker L J, Kettman J R . Clin. Chem., 1997,43:1749. https://www.ncbi.nlm.nih.gov/pubmed/9299971

pmid: 9299971
[4]
[2018-07-01] http://www.luminexcorp.com/. http://www.luminexcorp.com/
[5]
Wilson R, Cossins A R, Spiller D G . Angew. Chem. Int. Edit., 2006,45:6104. https://www.ncbi.nlm.nih.gov/pubmed/16941506

doi: 10.1002/anie.200600288 pmid: 16941506
[6]
Moran E J, Sarshar S, Cargill J F, Shahbaz M M, Lio A, Mjalli A M, Armstrong R W . J. Am. Chem. Soc., 1995,117:10787.
[7]
Nicolaou K C, Xiao X Y, Parandoosh Z, Senyei A, Nova M P . Angew. Chem. Int. Edit., 1995,34:2289.
[8]
Song A, Zhang J, Lebrilla, C B, Lam K S . J. Am. Chem. Soc., 2003,125:6180. https://www.ncbi.nlm.nih.gov/pubmed/12785850

doi: 10.1021/ja034539j pmid: 12785850
[9]
Vaino A R, Janda K D . Proc. Natl. Acad. Sci.U. S. A., 2000,97:7692. https://www.ncbi.nlm.nih.gov/pubmed/10884401

doi: 10.1073/pnas.97.14.7692 pmid: 10884401
[10]
Birtwell S, Morgan H . Integrative Biology, 2009,1:345. https://www.ncbi.nlm.nih.gov/pubmed/20023742

doi: 10.1039/b905502a pmid: 20023742
[11]
Wang G, Leng Y, Dou H, Wang L, Li W, Wang X, Sun K, Shen L, Yuan X, Li J, Sun K, Han J, Xiao H, Li Y . ACS Nano, 2012,7:471. https://www.ncbi.nlm.nih.gov/pubmed/23205725

doi: 10.1021/nn3045215 pmid: 23205725
[12]
Han M, Gao X, Su J Z, Nie S . Nat. Biotechnol., 2001,19:631. https://www.ncbi.nlm.nih.gov/pubmed/11433273

doi: 10.1038/90228 pmid: 11433273
[13]
Eastman P S, Ruan W, Doctolero M, Nuttall R, De Feo G, Park J S, Chu J S F, Cooke P, Gray J W, Li S, Chen F F . Nano Lett., 2006,6:1059. https://www.ncbi.nlm.nih.gov/pubmed/16683851

doi: 10.1021/nl060795t pmid: 16683851
[14]
Lu B R, He Q H, He Y H, Chen X J, Feng G X, Liu S Y, Ji Y H . Anal. Chim. Acta, 2018,1024:153 https://www.ncbi.nlm.nih.gov/pubmed/29776541

doi: 10.1016/j.aca.2018.03.025 pmid: 29776541
[15]
Kuo C T, Peng H S, Rong Y, Yu J B, Sun W, Fujimoto B, Chiu D T . Anal. Chem., 2017,89:6232. https://www.ncbi.nlm.nih.gov/pubmed/28499337

doi: 10.1021/acs.analchem.7b01214 pmid: 28499337
[16]
Shen Z Y, He Y H, Zhang G, He Q H, Li D M, Ji Y H . Opt. Lett., 2018,43:739. https://www.ncbi.nlm.nih.gov/pubmed/29444066

doi: 10.1364/OL.43.000739 pmid: 29444066
[17]
Feng G X, He Q H, Xie W Y, He Y H, Chen X J, Wang B, Lu B R, Guan T . RSC Adv., 2018,8:21272. http://xlink.rsc.org/?DOI=C8RA02410C

doi: 10.1039/C8RA02410C
[18]
Lee J, Bisso P W, Srinivas R L, Kim J J, Swiston A J, Doyle P S . Nat. Mater., 2014,13:524. https://www.ncbi.nlm.nih.gov/pubmed/24728464

doi: 10.1038/nmat3938 pmid: 24728464
[19]
Pregibon D C, Toner M, Doyle P S . Science, 2007,315:1393. https://www.ncbi.nlm.nih.gov/pubmed/17347435

doi: 10.1126/science.1134929 pmid: 17347435
[20]
St-Louis, M., Bugert, P . DNA and RNA Profiling in Human Blood: Methods and Protocols. NJ: Humana Press, 2009. 129.
[21]
Hill H D, Mirkin C A . Nat. Protoc., 2006,1:324. https://www.ncbi.nlm.nih.gov/pubmed/17406253

doi: 10.1038/nprot.2006.51 pmid: 17406253
[22]
Liang Y, Abdelrahman A I, Baranov V, Winnik M A . Polymer, 2011,52:5040.
[23]
Abdelrahman A I, Dai S, Thickett S C, Ornatsky O, Bandura D, Baranov V, Winnik M A . J. Am. Chem. Soc., 2009,131:15276. https://www.ncbi.nlm.nih.gov/pubmed/19807075

doi: 10.1021/ja9052009 pmid: 19807075
[24]
Moran E J, Sarshar S, Cargill J F, Shahbaz M M, Lio A, Mjalli A M, Armstrong R W . J. Am. Chem. Soc., 1995,117:10787.
[25]
Nicolaou K C, Xiao X Y, Parandoosh Z, Senyei A, Nova M P . Angew. Chem. Int. Edit., 1995,34:2289.
[26]
Beneckya M J, Post D R, Schmitt S M, Kochar M S . Clin. Chem., 1997,43:1764. https://www.ncbi.nlm.nih.gov/pubmed/9299973

pmid: 9299973
[27]
Hayward T J, Hong B, Vyas K N, Palfreyman J J, Cooper J F K, Jiang Z, Jeong J R, Llandro J, Mitrelias T, Bland J A C, Barnes C H W . J. Phys. D: Appl. Phys., 2010,43:175001.
[28]
Jeong J R, Llandro J, Hong B, Hayward T J, Mitrelias T, Kopper K P, Trypiniotis T, Steinmuller S J, Simpson G K, Bland, J. A. C . Lab on a Chip, 2008,8:1883. https://www.ncbi.nlm.nih.gov/pubmed/18941689

doi: 10.1039/b807632d pmid: 18941689
[29]
Albitar M . Monoclonal Antibodies: Methods and Protocols. NY: Springer Science & Business Media. 2007. 125.
[30]
Akinfieva O, Nabieva I, Sukhanova A . Crit. Rev. Oncol. Hemat., 2013,8:1. https://linkinghub.elsevier.com/retrieve/pii/S1040842888800039

doi: 10.1016/S1040-8428(88)80003-9
[31]
Sukhanova A, Nabiev I . Crit. Rev. Oncol. Hemat., 2008,68:39. https://www.ncbi.nlm.nih.gov/pubmed/18621543

doi: 10.1016/j.critrevonc.2008.05.006 pmid: 18621543
[32]
Genger U R, Grabolle M, Jaricot S C, Nitschke R, Nann T . Nat. Methods, 2008,5:763. https://www.ncbi.nlm.nih.gov/pubmed/18756197

doi: 10.1038/nmeth.1248 pmid: 18756197
[33]
Gorris H H, Wolfbeis O S . Angew. Chem. Int. Edit., 2013,52:3584. 3eeb1c6a-e5ee-450b-85b5-b03a90b2f89fhttp://dx.doi.org/10.1002/anie.201208196

doi: 10.1002/anie.201208196
[34]
Jun B H, Kim G, Noh M S, Kang H, Kim Y K, Cho M H, Jeong D H, Lee Y S . Nanomedicine, 2011,6:1463. https://www.ncbi.nlm.nih.gov/pubmed/22026382

doi: 10.2217/nnm.11.123 pmid: 22026382
[35]
Zhao Y J, Zhao X W, Sun C, Li J, Zhu R, Gu Z . Anal. Chem., 2008,80:1598. https://www.ncbi.nlm.nih.gov/pubmed/18247635

doi: 10.1021/ac702249a pmid: 18247635
[36]
Lee J A, Hung A, Mardyani S, Rhee A, Klostranec J, Mu Y, David L, Chan W C . Adv. Mater., 2007,19:3113.
[37]
Klarreich E . Nature, 2001,413:450. https://www.ncbi.nlm.nih.gov/pubmed/11586322

doi: 10.1038/35097256 pmid: 11586322
[38]
Michalet X, Pinaud F F, Bentolila L A, Tsay J M, Doose S, Li J J, Li J J, Sundaresan G, Wu A M, Gambhir S S, Weiss S . Science, 2005,307:538. https://www.ncbi.nlm.nih.gov/pubmed/15681376

doi: 10.1126/science.1104274 pmid: 15681376
[39]
Zhang D S Z, Jiang Y, Yang H O, Zhu Y J, Zhang S J, Zhu Y, Wei D, Lin Y, Wang P P, Fu Q H, Xu H, Gu H C . Adv. Funct. Mater., 2016,26:6146.
[40]
Leng Y K, Wu W W, Li L, Lin K, Sun K, Chen X Y, Li W W . Adv. Funct. Mater., 2016,26:7581.
[41]
Lu S, Zhang D S, Wei D, Lin Y, Zhang S J, He H, Wei X B, Gu H C, Xu H . Chem. Mater., 2017,29:10398. https://pubs.acs.org/doi/10.1021/acs.chemmater.7b03811

doi: 10.1021/acs.chemmater.7b03811
[42]
Bilan R, Ametzazurra A, Brazhnik K, Escorza S, Fernández D, Uríbarri M, Nabiev I, Sukhanova A . Sci. Rep., 2017,7:44668. https://www.ncbi.nlm.nih.gov/pubmed/28300171

doi: 10.1038/srep44668 pmid: 28300171
[43]
Nifontova G O, Sukhanova A V, Samokhvalov P S, Nabiev I R . KnE Energy Phys., 2018,3:305.
[44]
Zhao P, Xu Q, Tao J, Jin Z W, Pan Y, Yu C M, Yu Z Q . WIREs Nanomed. Nanobiotechnol. 2018,10, DOI: 10.1002/wnan.1483
[45]
Zhang D S, Jiang Y, Wei D, Wei X B, Xu H, Gu H C . Nanoscale. 2018,10:12461. https://www.ncbi.nlm.nih.gov/pubmed/29926869

doi: 10.1039/c8nr01888j pmid: 29926869
[46]
Bidoz S F, Jennings T L, Klostranec J M, Fung W, Rhee A, Li D, Chan W C . Angew. Chem. Int. Edit., 2008,47:5577. https://www.ncbi.nlm.nih.gov/pubmed/18613155

doi: 10.1002/anie.200800409 pmid: 18613155
[47]
Gao X H, Nie S M . Anal. Chem., 2004,76:2406. https://www.ncbi.nlm.nih.gov/pubmed/15080756

doi: 10.1021/ac0354600 pmid: 15080756
[48]
Ku K H, Kim M P, Paek K, Shin J M, Chung S, Jang S G, Chae W S, Yi G R, Kim B J . Small, 2013,9:2667. https://www.ncbi.nlm.nih.gov/pubmed/23401329

doi: 10.1002/smll.201202839 pmid: 23401329
[49]
Chen Y, Dong P F, Xu J H, Luo G S . Langmuir, 2014,30(28):8538. https://www.ncbi.nlm.nih.gov/pubmed/24956221

doi: 10.1021/la501692h pmid: 24956221
[50]
Ma Q, Serrano I C, Palomares E . Chem. Commun., 2011,47:7071. https://www.ncbi.nlm.nih.gov/pubmed/21617805

doi: 10.1039/c1cc11070e pmid: 21617805
[51]
Luo S L, Zhang E L, Su Y P, Cheng T, Shi C . Biomaterials, 2011,32:7127. https://www.ncbi.nlm.nih.gov/pubmed/21724249

doi: 10.1016/j.biomaterials.2011.06.024 pmid: 21724249
[52]
Cheng A, Gonçalves J T, Golshani P, Arisaka K, Portera-Cailliau, C . Nat. Methods, 2011,8:139. https://www.ncbi.nlm.nih.gov/pubmed/21217749

doi: 10.1038/nmeth.1552 pmid: 21217749
[53]
Pawlicki M, Collins H A, Denning R G, Anderson H L . Angew. Chem. Int. Edit., 2009,48:3244. https://www.ncbi.nlm.nih.gov/pubmed/19370705

doi: 10.1002/anie.200805257 pmid: 19370705
[54]
Wang F, Banerjee D, Liu Y S, Chen X Y, & Liu X G . Analyst, 2010,135:1839. https://www.ncbi.nlm.nih.gov/pubmed/20485777

doi: 10.1039/c0an00144a pmid: 20485777
[55]
Wang F, Liu X G . J. Am. Chem. Soc., 2008,130:5642. https://www.ncbi.nlm.nih.gov/pubmed/18393419

doi: 10.1021/ja800868a pmid: 18393419
[56]
Zhou J C, Yang Z L, Dong W, Tang R J, Sun L D, Yan C H . Biomaterials, 2011,32:9059. https://www.ncbi.nlm.nih.gov/pubmed/21880365

doi: 10.1016/j.biomaterials.2011.08.038 pmid: 21880365
[57]
Jin D Y . Nature Photonics, 2016,10:567.
[58]
Wang F, Deng R R, Wang J, Wang Q, Han Y, Zhu H, Chen X, Liu X . Nat. Mater., 2011,10:968. https://www.ncbi.nlm.nih.gov/pubmed/22019945

doi: 10.1038/nmat3149 pmid: 22019945
[59]
Gorris H H, Ali R, Saleh S M, Wolfbeis O S . Adv. Mater., 2011,23:1652. https://www.ncbi.nlm.nih.gov/pubmed/21472793

doi: 10.1002/adma.201004697 pmid: 21472793
[60]
Zhang F, Shi Q, Zhang Y, Shi Y, Ding K, Zhao D, Stucky G D . Adv. Mater., 2011,23:3775. d149f2ee-b311-44c3-9c01-e6174277a025http://dx.doi.org/10.1002/adma.201101868

doi: 10.1002/adma.201101868
[61]
Liu H C, Jayakumar M K G, Huang K, Wang Z, Zheng X, Ågren H., Zhang Y . Nanoscale, 2017,9:1676. https://www.ncbi.nlm.nih.gov/pubmed/28084478

doi: 10.1039/c6nr09349c pmid: 28084478
[62]
Liao Z Y, Zhang Y, Su L, Chang J, Wang H J . J. Nanopart. Res., 2017,19:60. http://link.springer.com/10.1007/s11051-016-3717-2

doi: 10.1007/s11051-016-3717-2
[63]
Wang J, Wang F, Wang C, Liu Z, Li X . Angew. Chem. Int. Edit., 2011,50:10369. 985f3dda-7c49-4f08-95e6-5bb0cca6bb43http://dx.doi.org/10.1002/anie.201104192

doi: 10.1002/anie.201104192
[64]
Tian G, Gu Z, Zhou L, Yin W, Liu X, Yan L, Jin S, Ren W, Xing G, Li S, Zhao Y . Adv. Mater., 2012,24:1226. https://www.ncbi.nlm.nih.gov/pubmed/22282270

doi: 10.1002/adma.201104741 pmid: 22282270
[65]
Chan E M, Han G, Goldberg J D, Gargas D J, Ostrowski A D, Schuck P J, Cohen B E, Milliron D J . Nano Lett., 2012,12:3839. https://www.ncbi.nlm.nih.gov/pubmed/22713101

doi: 10.1021/nl3017994 pmid: 22713101
[66]
Cui H H, Valdez J G, Steinkamp J A, Steinkamp J A, Crissman H A . Cytom. Part A, 2003,52:46. https://www.ncbi.nlm.nih.gov/pubmed/12596251

doi: 10.1002/cyto.a.10022 pmid: 12596251
[67]
Watson D A, Brown L O, Gaskill D F, Naivar M, Graves S W, Doorn S K, Nolan J P . Cytom. Part A, 2008,73:119.
[68]
Lu Y Q, Zhao J B, Zhang R, Liu Y J, Liu D M, Goldys E M, Yang X S, Xi P, Sunna A, Lu J, Shi Y, Leif R C, Huo Y J, Shen J, Piper J A, Robinson J P, Jin D Y . Nat. Photonics, 2014,8:32.
[69]
Hoffmann K, Behnke T, Drescher D, Kneipp J, Resch-Genger U . ACS Nano, 2013,7:6674. https://www.ncbi.nlm.nih.gov/pubmed/23837453

doi: 10.1021/nn4029458 pmid: 23837453
[70]
Hagan A K, Zuchner T . Anal. Bioanal.Chem., 2011,400:2847. https://www.ncbi.nlm.nih.gov/pubmed/21556751

doi: 10.1007/s00216-011-5047-7 pmid: 21556751
[71]
Tu D T, Liu L Q, Ju Q, Liu Y S, Zhu H M, Li R F, Chen X Y . Angew. Chem. Int. Edit., 2011,50:6306. https://www.ncbi.nlm.nih.gov/pubmed/21612007

doi: 10.1002/anie.201100303 pmid: 21612007
[72]
Geißler D, Stufler S, Löhmannsröben H G, Hildebrandt N . J. Am. Chem. Soc., 2012,135:1102. https://www.ncbi.nlm.nih.gov/pubmed/23231786

doi: 10.1021/ja310317n pmid: 23231786
[73]
Rajapakse H E, Gahlaut N, Mohandessi S, Yu D, Turner J R, Miller L W . Proc. Natl. Acad. Sci. U. S. A., 2010,107:13582. https://www.ncbi.nlm.nih.gov/pubmed/20643966

doi: 10.1073/pnas.1002025107 pmid: 20643966
[74]
Zhao J B, Lu Z D, Yin Y D, McRae C, Piper J A, Dawes J M, Jin D Y, Goldys E M . Nanoscale, 2013,5:944. https://www.ncbi.nlm.nih.gov/pubmed/23223581

doi: 10.1039/c2nr32482b pmid: 23223581
[75]
Lu Y Q, Lu J, Zhao J B, Cusido J, Raymo F M, Yuan J L, Yang S, Leif R C, Huo Y J, Piper J A, Robinson J P, Goldys E M, Jin D Y . Nat. Commun., 2014,5:3741. https://www.ncbi.nlm.nih.gov/pubmed/24796249

doi: 10.1038/ncomms4741 pmid: 24796249
[76]
Chen C, Zhang P F, Gao G H, Gao D Y, Yang Y, Liu H, Wang Y H, Gong P, Cai L T . Adv. Mater., 2014,26:6313. https://www.ncbi.nlm.nih.gov/pubmed/25066411

doi: 10.1002/adma.201402369 pmid: 25066411
[77]
Mulvihill M J, Ling X Y, Henzie J, Yang P . J. Am. Chem. Soc., 2009,132:268. https://www.ncbi.nlm.nih.gov/pubmed/20000421

doi: 10.1021/ja906954f pmid: 20000421
[78]
Boisselier E, Astruc D . Chem. Soc. Rev., 2009,38:1759. https://www.ncbi.nlm.nih.gov/pubmed/19587967

doi: 10.1039/b806051g pmid: 19587967
[79]
Sharma B, Frontiera R R, Henry A I, Ringe E, Van Duyne R P . Mater. Today, 2012,15:16.
[80]
Qian X M, Nie S M . Chem. Soc. Rev., 2008,37:912. https://www.ncbi.nlm.nih.gov/pubmed/18443676

doi: 10.1039/b708839f pmid: 18443676
[81]
Qian X M, Peng X H, Ansari D O, Yin-Goen Q, Chen G Z, Shin D M, Yang L, Young A N, Wang M D, Nie S M . Nat. Biotechnol., 2008,26:83. https://www.ncbi.nlm.nih.gov/pubmed/18157119

doi: 10.1038/nbt1377 pmid: 18157119
[82]
Zavaletaa C L, Smitha B R, Waltonb I, Doering W, Davis G, Shojaei B, Natan M J, Gambhir S S . Proc. Natl. Acad. Sci. U. S. A., 2009,106:13511. http://www.pnas.org/cgi/doi/10.1073/pnas.0813327106

doi: 10.1073/pnas.0813327106
[83]
Alvarez-Puebla R A, Liz-Marzán L M . Small, 2010,6:604. https://www.ncbi.nlm.nih.gov/pubmed/20108237

doi: 10.1002/smll.200901820 pmid: 20108237
[84]
Camden J P, Dieringer J A, Wang Y M, Masiello D J, Marks L D, Schatz G C, Van Duyne R P . J. Am. Chem. Soc., 2008,130:12616. https://www.ncbi.nlm.nih.gov/pubmed/18761451

doi: 10.1021/ja8051427 pmid: 18761451
[85]
Lim D K, Jeon K S, Kim H M, Nam J M, Suh Y D . Nat. Mater., 2010,9:60. https://doi.org/10.1038/nmat2596

doi: 10.1038/nmat2596
[86]
Nie S M, Emory S R . Science, 1997,275:1102. https://www.ncbi.nlm.nih.gov/pubmed/9027306

doi: 10.1126/science.275.5303.1102 pmid: 9027306
[87]
Su X, Zhang J W, Sun L, Koo T W, Chan S, Sundararajan N, Yamakawa M, Berlin A A . Nano Lett., 2005,5:49. https://www.ncbi.nlm.nih.gov/pubmed/15792411

doi: 10.1021/nl0484088 pmid: 15792411
[88]
Wang Z Y, Zong S F, Li W, Wang C L, Xu S H, Chen H, Cui Y P . J. Am. Chem. Soc., 2012,134:2993. dbd387b5-96db-4cbc-9810-42159b330e3dhttp://dx.doi.org/10.1021/ja208154m

doi: 10.1021/ja208154m
[89]
Lutz B R, Dentinger C E, Nguyen L N, Sun L, Zhang J, Allen A N, Chan S, Knudsen B S . ACS Nano, 2008,2:2306. https://www.ncbi.nlm.nih.gov/pubmed/19206397

doi: 10.1021/nn800243g pmid: 19206397
[90]
Kim J H, Kang H, Kim S, Jun, B. H, Kang T., Chae J., Jeong S, Kim J, Jeong D H, Lee Y S . Chem. Commun., 2011,47:2306. https://www.ncbi.nlm.nih.gov/pubmed/21152545

doi: 10.1039/c0cc04415f pmid: 21152545
[91]
Saute B, Premasiri R, Ziegler L, Narayanan R . Analyst, 2012,137:5082. b70994e6-80c9-4b13-ba1c-e8543cb71467http://dx.doi.org/10.1039/c2an36047k

doi: 10.1039/c2an36047k
[92]
Lee S, Joo S, Park S, Kim S, Kim H C, Chung T D . Electrophoresis, 2010,31:1623. https://www.ncbi.nlm.nih.gov/pubmed/20419705

doi: 10.1002/elps.200900743 pmid: 20419705
[93]
Hu F H, Zeng C, Long R, Miao Y P, Wei L, Xu Q Z, Min W . Nat. Methods, 2018,15:194. https://www.ncbi.nlm.nih.gov/pubmed/29334378

doi: 10.1038/nmeth.4578 pmid: 29334378
[94]
Liu B, Zhang D, Ni, H B, Wang D L, Jiang L Y, Fu D G, Han X F, Zhang C, Chen H Y, Gu Z Z, Zhao X W . ACS Appl. Mater. Interfaces, 2017,10:21. https://www.ncbi.nlm.nih.gov/pubmed/29251902

doi: 10.1021/acsami.7b14942 pmid: 29251902
[95]
Wang Z Y, Zong S F, Wu L, Zhu D, Cui Y P . Chem. Rev., 2017,117:7910. https://www.ncbi.nlm.nih.gov/pubmed/28534612

doi: 10.1021/acs.chemrev.7b00027 pmid: 28534612
[96]
Liu B, Ni H B, Zhang D, Wang D L, Fu D G, Chen H Y, Gu Z Z, Zhao X W . ACS sensors, 2017,2:1035. https://www.ncbi.nlm.nih.gov/pubmed/28750518

doi: 10.1021/acssensors.7b00310 pmid: 28750518
[97]
Jun B H, Noh M S, Kim G, Kang H, Kim J. H, Chung W J, Kim M S, Kim Y K, Cho M H, Jeong D H, Lee Y S . Anal. Biochem., 2009,391:24. https://www.ncbi.nlm.nih.gov/pubmed/19433055

doi: 10.1016/j.ab.2009.05.005 pmid: 19433055
[98]
Doering W E, Piotti M E, Natan M J, Freeman R G . Adv. Mater., 2007,19:3100. https://www.ncbi.nlm.nih.gov/pubmed/24554595

doi: 10.1002/adma.201305678 pmid: 24554595
[99]
Jin R C, Cao Y. C, Thaxton C S, Mirkin C A . Small, 2006,2:375. https://www.ncbi.nlm.nih.gov/pubmed/17193054

doi: 10.1002/smll.200500322 pmid: 17193054
[100]
Zhao Y J, Zhao X W, Gu Z Z . Adv. Funct. Mater., 2010,20:2970. http://doi.wiley.com/10.1002/adfm.201000098

doi: 10.1002/adfm.201000098
[101]
Taubes G . Science, 1997,278:1709. https://www.sciencemag.org/lookup/doi/10.1126/science.278.5344.1709

doi: 10.1126/science.278.5344.1709
[102]
Cunin F, Schmedake T A, Link J R, Li Y Y, Koh, J, Bhatia S N, Sailor M J . Nat. Mater., 2002,1:39. https://www.ncbi.nlm.nih.gov/pubmed/12618846

doi: 10.1038/nmat702 pmid: 12618846
[103]
Meade S O, Chen M Y, Sailor M J, Miskelly G M . Anal. Chem., 2009,81:2618. https://www.ncbi.nlm.nih.gov/pubmed/19271746

doi: 10.1021/ac802538x pmid: 19271746
[104]
Zhao Y J, Zhao X W, Hu J, Li J, Xu W Y, Gu Z Z . Angew. Chem. Int. Edit., 2009,48:7350. https://www.ncbi.nlm.nih.gov/pubmed/19731292

doi: 10.1002/anie.200903472 pmid: 19731292
[105]
Tang B C, Zhao X W, Zhao Y J, Zhang W D, Wang Q R, Kong L F, Gu Z Z . Langmuir, 2011,27:11722. https://www.ncbi.nlm.nih.gov/pubmed/21823629

doi: 10.1021/la202202j pmid: 21823629
[106]
Zhao Y J, Zhao X W, Hu J, Xu M, Zhao W J, Sun L G, Zhu C, Xu H, Gu Z Z . Adv. Mater., 2009,21:569. https://www.ncbi.nlm.nih.gov/pubmed/21161983

doi: 10.1002/adma.200802339 pmid: 21161983
[107]
Li J, Zhao X W, Zhao Y J, Hu J, Xu M, Gu Z Z . J. Mater. Chem., 2009,19:6492.
[108]
Zhao Y J, Xie Z Y, Gu H C, Jin L, Zhao X W, Wang B P, Gu Z Z . NPG Asia Mater., 2012,4:25.
[109]
Houser B . Arch. Physiol. Biochem., 2012,118:192. 7064deca-a85d-48f0-9bd5-87b0055d540fhttp://dx.doi.org/10.3109/13813455.2012.705301

doi: 10.3109/13813455.2012.705301
[110]
Wang G, Zhang P F, Dou H J, Li W W, Sun K, He X T, Han J S, Xiao H S, Li Y . Langmuir, 2012,28:6141. https://www.ncbi.nlm.nih.gov/pubmed/22428794

doi: 10.1021/la300066c pmid: 22428794
[111]
Song T, Liu J Q, Li W B, Li Y H, Yang Q H, Gong X Q, Xuan L X, Chang J . ACS Appl. Mater. Interf., 2014,6:2745. https://pubs.acs.org/doi/10.1021/am405285u

doi: 10.1021/am405285u
[112]
Decher G . Science, 1997,277:1232. https://www.sciencemag.org/lookup/doi/10.1126/science.277.5330.1232

doi: 10.1126/science.277.5330.1232
[113]
Wang D Y, Rogach A L, Caruso F . Nano Lett., 2002,2:857. https://pubs.acs.org/doi/10.1021/nl025624c

doi: 10.1021/nl025624c
[114]
Wilson R, Spiller D G, Prior I A, Veltkamp K J, Hutchinson A . ACS Nano, 2007,1:48.
[115]
Allen C N, Lequeux N, Chassenieux C, Tessier G, Dubertret B . Adv. Mater., 2007,19:4420. http://doi.wiley.com/10.1002/%28ISSN%291521-4095

doi: 10.1002/(ISSN)1521-4095
[116]
Yoon M, Kim Y, Cho J . ACS Nano, 2011,5:5417. https://www.ncbi.nlm.nih.gov/pubmed/21688776

doi: 10.1021/nn200538a pmid: 21688776
[117]
Li H F, Gao S Y, Zheng Z L, Cao R . Catal. Sci. & Technol., 2011,1:1194.
[118]
Yang X T, Zhang Y . Langmuir, 2004,20:6071. https://www.ncbi.nlm.nih.gov/pubmed/16459632

doi: 10.1021/la049610t pmid: 16459632
[119]
Vaidya S V, Gilchrist M L, Maldarelli C, Couzis A . Anal. Chem., 2007,79:8520. https://www.ncbi.nlm.nih.gov/pubmed/17927278

doi: 10.1021/ac0710533 pmid: 17927278
[120]
Yin W, Liu H, Yates M Z, Du H, Jiang F, Guo L, Krauss T D . Chem. Mater., 2007,19:2930. https://pubs.acs.org/doi/10.1021/cm070214g

doi: 10.1021/cm070214g
[121]
Xiao Q B, Ji Y T, Xiao Z H, Zhang Y, Lin H Z, Wang Q B . Chem. Commun., 2013,49:1527. https://www.ncbi.nlm.nih.gov/pubmed/23321569

doi: 10.1039/c2cc37620b pmid: 23321569
[122]
Zhang Q B, Wang X, Zhu Y M . J. Mater. Chem., 2011,21:12132. http://xlink.rsc.org/?DOI=c1jm10350d

doi: 10.1039/c1jm10350d
[123]
Sheng W C, Kim S, Lee J, Kim S W, Jensen K, Bawendi M G . Langmuir, 2006,22:3782. https://www.ncbi.nlm.nih.gov/pubmed/16584256

doi: 10.1021/la051973l pmid: 16584256
[124]
Vladisavljevi G T, Kobayashi I, Nakajima M . Microfluid. Nanofluid., 2012,13:151. http://link.springer.com/10.1007/s10404-012-0948-0

doi: 10.1007/s10404-012-0948-0
[125]
Wang W, Zhang M J, Chu L Y . Accounts of Chemical Research, 2013,47:373. https://www.ncbi.nlm.nih.gov/pubmed/24199893

doi: 10.1021/ar4001263 pmid: 24199893
[126]
Zhao Y J, Shum H C, Chen H S, Adams L L, Gu Z Z, Weitz D A . J. Am. Chem. Soc., 2011,133:8790. b3bf116a-6be3-4c61-850c-1208a0188ec8http://dx.doi.org/10.1021/ja200729w

doi: 10.1021/ja200729w
[127]
Nguyen H Q, Baxter B C, Brower K, Diaz-Botia C A, DeRisi J L, Fordyce P M, Thorn K S . Adv. Opt. Mater., 2017,5:1600548. https://www.ncbi.nlm.nih.gov/pubmed/28936383

doi: 10.1002/adom.201600548 pmid: 28936383
[128]
Nguyen T H, Chen X M, Sedighi A, Krull U J, Ren C L . Microfluidics and Nanofluidics, 2018,22:63. https://doi.org/10.1007/s10404-018-2085-x

doi: 10.1007/s10404-018-2085-x
[129]
Gerver R E, Go’mez-Sjöberg R, Baxter B C, Thorn K S, Fordyce P M, Diaz-Botia C A, Helms B A, DeRisi J L . Lab Chip, 2012,12:4716. 2afc9797-b452-41b4-818d-c9dd0a75bc02http://dx.doi.org/10.1039/c2lc40699c

doi: 10.1039/c2lc40699c
[130]
Kim S H, Shim J W, Yang S M . Angew. Chem. Int. Edit., 2011,50:1171. 0b6357d7-64e0-497f-8b92-487d252a6a6chttp://dx.doi.org/10.1002/anie.201004869

doi: 10.1002/anie.201004869
[131]
Nakashima T, Shimizu M, Kukizaki M . Key Eng. Mater., 1992,61:513.
[132]
Joscelyne S M, Trägårdh G . J. Membr. Sci., 2000,169:107. https://linkinghub.elsevier.com/retrieve/pii/S0376738899003348

doi: 10.1016/S0376-7388(99)00334-8
[133]
Wagdare N A, Marcelis A T M, Ho O B, Boom R M, van Rijn C J . J. Membr. Sci., 2010,347:1. https://linkinghub.elsevier.com/retrieve/pii/S0376738809007145

doi: 10.1016/j.memsci.2009.09.057
[134]
Guo P, Huang J, Zhao Y P, Martin C R, Zare R N, Moses M A . Small, 2018,14:1703493. http://doi.wiley.com/10.1002/smll.v14.18

doi: 10.1002/smll.v14.18
[135]
Nandiyanto A B D, Okuyama K . Adv. Powder Technol., 2011,22:1.
[136]
Moon J H, Yi G R, Yang S M, Pine D J, Park S B . Adv. Mater., 2004,16:605.
[137]
Sun L, Yu X F, Sun M D, Wang H G, Xu S F, Dixon J D, Wang Y A, Li Y X, Yang Q B, Xu X Y . J. Colloid Interf. Sci., 2011,358:73.
[138]
Ciriminna R, Fidalgo A, Pandarus V, Béland F, Ilharco L M, Pagliaro M . Chem. Rev., 2013,113:6592. https://www.ncbi.nlm.nih.gov/pubmed/23782155

doi: 10.1021/cr300399c pmid: 23782155
[139]
Insin N, Tracy J B, Lee H, Zimmer J P, Westervelt R M, Bawendi M G . ACS Nano, 2008,2:197. https://www.ncbi.nlm.nih.gov/pubmed/19206619

doi: 10.1021/nn700344x pmid: 19206619
[140]
Chan Y, Zimmer J P, Stroh M, Steckel J S, Jain R K, Bawendi M G . Adv. Mater., 2004,16:2092. http://doi.wiley.com/10.1002/%28ISSN%291521-4095

doi: 10.1002/(ISSN)1521-4095
[141]
Qu X J, Jin H J, Liu Y Q, Sun Q J . Anal. Chem., 2018,90:3482. https://www.ncbi.nlm.nih.gov/pubmed/29431426

doi: 10.1021/acs.analchem.7b05235 pmid: 29431426
[142]
Ma Q, Nakane Y, Mori Y, Hasegawa M, Yoshioka Y, Watanabe T M, Gonda K Ohuchi N, Jin T . Biomaterials, 2012,33:8486. dec3d5c0-fddc-466a-b3bd-4b1a861fb2a3http://dx.doi.org/10.1016/j.biomaterials.2012.07.051

doi: 10.1016/j.biomaterials.2012.07.051
[143]
Wu S L, Ye L, Ning Y H, Niu W B, Zhang S F . Adv. Mater. Res., 2013,679:69.
[144]
Sanles-Sobrido M, Exner W, Rodríguez-Lorenzo L, Rodriíguez-Gonzaález B, Correa-Duarte M A, Álvarez-Puebla R A, Liz-Marzán L M . J. Am. Chem. Soc., 2009,131:2699. https://www.ncbi.nlm.nih.gov/pubmed/19182903

doi: 10.1021/ja8088444 pmid: 19182903
[145]
Giljohann D A, Mirkin C A . Nature, 2009,462:461. https://www.ncbi.nlm.nih.gov/pubmed/19940916

doi: 10.1038/nature08605 pmid: 19940916
[146]
Lowe M, Spiro A, Zhang Y Z, Getts R . Cytom. Part A, 2004,60:135. https://www.ncbi.nlm.nih.gov/pubmed/15290714

doi: 10.1002/cyto.a.20021 pmid: 15290714
[147]
Xiang Y, Zhang H X, Jiang B Y, Chai Y Q, Yuan R . Anal. Chem., 2011,83:430.
[148]
Wang C, Zhan R Y, Pu K Y, Liu B . Adv. Funct. Mater., 2010,20:2597. http://doi.wiley.com/10.1002/adfm.201000459

doi: 10.1002/adfm.201000459
[149]
Deng W, Drozdowicz-Tomsia K, Jin D Y, Goldys E M . Anal. Chem., 2009,81:7248. https://www.ncbi.nlm.nih.gov/pubmed/19715357

doi: 10.1021/ac900947h pmid: 19715357
[150]
Anderson G P, Taitt C R . Biosens. Bioelectron., 2008,24:324. https://www.ncbi.nlm.nih.gov/pubmed/18485692

doi: 10.1016/j.bios.2008.03.045 pmid: 18485692
[151]
Alivisatos P . Nat. Biotechnol., 2004,22:47. https://www.ncbi.nlm.nih.gov/pubmed/14704706

doi: 10.1038/nbt927 pmid: 14704706
[152]
Yan J L, Estévez M C, Smith J E, Wang K M, He X X, Wang L, Tan W H . Nano Today, 2007,2:44. f25409b9-329f-4870-a639-16ed2d39ddf1http://www.sciencedirect.com/science/article/pii/S1748013207701731

doi: 10.1016/S1748-0132(07)70173-1
[153]
Rousserie G, Sukhanova A, Even-Desrumeaux K, Fleury F, Chames P, Baty D, Oleinikov V, Pluot M, Cohen J H M, Nabiev NabievI . Crit. Rev. Oncol. Hemat., 2010,74(1):1. https://linkinghub.elsevier.com/retrieve/pii/S1040842809000833

doi: 10.1016/j.critrevonc.2009.04.006
[154]
Bruchez, M. P., Hotz, C. Z . Quantum Dots: Applications in Biology. NY: Springer Science & Business Media, 2007. 239.
[155]
Sukhanova A, Devy J, Venteo L, Kaplan H, Artemyev M, Oleinikov V, Klinov D, Pluot M, Cohen J H M, Nabiev I . Anal. Biochem., 2004,324:60. https://www.ncbi.nlm.nih.gov/pubmed/14654046

doi: 10.1016/j.ab.2003.09.031 pmid: 14654046
[156]
Klostranec J M, Chan W C W . Adv. Mater., 2006,18:1953.
[157]
Sperling R A, Parak W J . Philos. Trans. R. Soc. London, Ser. A, 2010,368:1333.
[158]
Pathak Y, Benita S . Antibody-Mediated Drug Delivery Systems: Concepts, Technology, and Applications. NYSE: John Wiley & Sons, 2012. 191.
[159]
Golden J P, Verbarg J, Howell P B, Shriver-Lake L C, Ligler F S . Biosens. Bioelectron., 2013,40:10. https://www.ncbi.nlm.nih.gov/pubmed/22960010

doi: 10.1016/j.bios.2012.08.015 pmid: 22960010
[160]
Flagella M, Bui S, Zheng Z, Nguyen C T, Zhang A G, Pastor L, Ma Y Q, Yang W, Crawford K L, McMaster G K, Witney F, Luo Y L . Anal. Biochem., 2006,352:50. https://www.ncbi.nlm.nih.gov/pubmed/16545767

doi: 10.1016/j.ab.2006.02.013 pmid: 16545767
[161]
Bally M, Syed S, Binkert A, Kauffmann E, Ehrat M, Vörös J . Anal. Biochem., 2011,416:145. https://www.ncbi.nlm.nih.gov/pubmed/21669176

doi: 10.1016/j.ab.2011.05.030 pmid: 21669176
[162]
Chen C X, Wu J . Sensors, 2012,12:11684. https://www.ncbi.nlm.nih.gov/pubmed/23112677

doi: 10.3390/s120911684 pmid: 23112677
[163]
Park J, Park Y, Kim S . ACS Nano, 2013,7:9416. https://www.ncbi.nlm.nih.gov/pubmed/24063720

doi: 10.1021/nn4042078 pmid: 24063720
[164]
Ren W, Liu H M, Yang W X, Fan Y L, Yang L, Wang Y C, Liu C H, Li Z P . Biosens. Bioelectron., 2013,49:380. https://www.ncbi.nlm.nih.gov/pubmed/23807231

doi: 10.1016/j.bios.2013.05.055 pmid: 23807231
[165]
Cheng W, Yan F, Ding L, Ju H, Yin Y . Anal. Chem., 2010,82:3337. https://www.ncbi.nlm.nih.gov/pubmed/20345087

doi: 10.1021/ac100144g pmid: 20345087
[166]
Chapin S C, Doyle P S . Anal. Chem., 2011,83:7179. https://www.ncbi.nlm.nih.gov/pubmed/21812442

doi: 10.1021/ac201618k pmid: 21812442
[167]
Wang C H, Lien K Y, Wu J J, Lee G B . Lab on a Chip, 2011,11:1521. https://www.ncbi.nlm.nih.gov/pubmed/21399774

doi: 10.1039/c0lc00430h pmid: 21399774
[168]
Xuan F, Hsing I M . J. Am. Chem. Soc., 2014,136:9810. https://www.ncbi.nlm.nih.gov/pubmed/24969438

doi: 10.1021/ja502904s pmid: 24969438
[169]
Wang Y S, Liu B . Anal. Chem., 2007,79:7214. https://www.ncbi.nlm.nih.gov/pubmed/17711299

doi: 10.1021/ac0712594 pmid: 17711299
[170]
Brouard D, Viger M L, Bracamonte A G, Boudreau D . ACS Nano, 2011,5:1888. https://www.ncbi.nlm.nih.gov/pubmed/21344882

doi: 10.1021/nn102776m pmid: 21344882
[171]
Zhao Q, Piao J F, Peng W P, Wang Y, Zhang B, Gong X Q, Chang J . ACS Appl. Mater. Interfaces, 2018,10:3324. https://www.ncbi.nlm.nih.gov/pubmed/29300448

doi: 10.1021/acsami.7b16733 pmid: 29300448
[172]
Sheng T, Xie Z Y, Liu P M, Chen J L, Chen S, Ding H L, Deng J Z, Yuan Y, Deng D . ACS Appl. Mater. Interfaces, 2018,1800343.
[173]
Deng W, Goldys E M . Langmuir, 2012,28:10152. https://www.ncbi.nlm.nih.gov/pubmed/22568517

doi: 10.1021/la300332x pmid: 22568517
[174]
Tarn M D, Lopez-Martinez M J, Pamme N . Anal. Bioanal.Chem., 2014,406:139. https://www.ncbi.nlm.nih.gov/pubmed/24150283

doi: 10.1007/s00216-013-7363-6 pmid: 24150283
[175]
Chen K, Chou L Y T, Song F Y, Chan W C . Nano Today, 2013,8:228. https://linkinghub.elsevier.com/retrieve/pii/S1748013213000467

doi: 10.1016/j.nantod.2013.04.009
[176]
Wu X W, Gong M, Dong C H, Cui J M, Yang Y, Sun F W, Guo G C, Han Z F . Opt. Express, 2010,18:6340. https://www.ncbi.nlm.nih.gov/pubmed/20389657

doi: 10.1364/OE.18.006340 pmid: 20389657
[177]
Ling M M, Ricks C, Lea P . Expert Rev. Mol. Diagn., 2007,7:87. https://www.ncbi.nlm.nih.gov/pubmed/17187487

doi: 10.1586/14737159.7.1.87 pmid: 17187487
[178]
Nery A A, Wrenger C, Ulrich H . J. Sep. Sci., 2009,32:1523. https://www.ncbi.nlm.nih.gov/pubmed/19472283

doi: 10.1002/jssc.200800695 pmid: 19472283
[179]
Nagasaki Y . Polym. J., 2011,43:949. https://doi.org/10.1038/pj.2011.93

doi: 10.1038/pj.2011.93
[180]
Ellington A A, Kullo I J, Bailey K R, Klee G G . Clin. Chem., 2010,56:186. https://www.ncbi.nlm.nih.gov/pubmed/19959625

doi: 10.1373/clinchem.2009.127514 pmid: 19959625
[181]
Sasso L A, Johnston I H, Zheng M D, Gupte R K, Ündar A, Zahn J D . Microfluid. Nanofluid., 2012,13:603. https://www.ncbi.nlm.nih.gov/pubmed/26366143

doi: 10.1007/s10404-012-0980-0 pmid: 26366143
[182]
Dincer C, Bruch R, Kling A, Dittrich P S, Urban G A . Trends Biotechnol., 2017,35:728. https://www.ncbi.nlm.nih.gov/pubmed/28456344

doi: 10.1016/j.tibtech.2017.03.013 pmid: 28456344
[183]
Nge P N, Rogers C I, Woolley A T . Chem. Rev., 2013,113:2550. https://www.ncbi.nlm.nih.gov/pubmed/23410114

doi: 10.1021/cr300337x pmid: 23410114
[184]
Derveaux S, Stubbe B G, Braeckmans K, Roelant C, Sato K, Demeester J, De Smedt S C . Anal. Bioanal.Chem., 2008,391:2453. https://www.ncbi.nlm.nih.gov/pubmed/18458889

doi: 10.1007/s00216-008-2062-4 pmid: 18458889
[185]
Phurimsak C, Yildirim E, Tarn M D, Trietsch S J, Hankemeier T, Pamme N, Vulto P . Lab on a Chip, 2014,14:2334. 4f457db0-37b2-48de-ab16-71cf943d7876http://dx.doi.org/10.1039/c4lc00139g

doi: 10.1039/c4lc00139g
[186]
Yang S Y, Lien K Y, Huang K J, Lei H Y, Lee G B . Biosens. Bioelectron., 2008,24:855. https://www.ncbi.nlm.nih.gov/pubmed/18760591

doi: 10.1016/j.bios.2008.07.015 pmid: 18760591
[187]
Choi K, Ng A H C, Fobel R, Chang-Yen D A, Yarnell L E, Pearson E L, Oleksak C M, Fischer A T, Luoma R P, Robinson J M, Audet J, Wheeler A R . Anal. Chem., 2013,85:9638. https://www.ncbi.nlm.nih.gov/pubmed/23978190

doi: 10.1021/ac401847x pmid: 23978190
[188]
Lin G G, Makarov D, Schmidt O G . Lab on a Chip, 2017,17:1884. https://www.ncbi.nlm.nih.gov/pubmed/28485417

doi: 10.1039/c7lc00026j pmid: 28485417
[189]
Moro L, Turemis M, Marini B, Ippodrino R, Giardi M T . Biotechnol. Adv., 2017,35:51. https://www.ncbi.nlm.nih.gov/pubmed/27923765

doi: 10.1016/j.biotechadv.2016.11.007 pmid: 27923765
[190]
Laksanasopin T, Guo T W, Nayak S, Sridhara A A, Xie S, Olowookere O O, Cadinu P, Meng F X, Chee N H, Kim J, Chin C D, Munyazesa E, Mugwaneza P, Rai A J, Mugisha V, Castro A R, Steinmiller D, Linder V, Justman J E, Nsanzimana S, Sia S K . Sci. Transl. Med., 2015, 7: 273re1. https://www.ncbi.nlm.nih.gov/pubmed/25653222

doi: 10.1126/scitranslmed.aaa0056 pmid: 25653222
[191]
Ming K, Kim J, Biondi M J, Syed A, Chen K, Lam A, Ostrowski M, Rebbapragada A, Feld J J, Chan W C . ACS Nano, 2015,9:3060. https://www.ncbi.nlm.nih.gov/pubmed/25661584

doi: 10.1021/nn5072792 pmid: 25661584
[192]
Ateya D A, Erickson J S, Howell P B, Hilliard L R, Golden J P, Ligler F S . Anal. Bioanal. Chem., 2008,391:1485. https://www.ncbi.nlm.nih.gov/pubmed/18228010

doi: 10.1007/s00216-007-1827-5 pmid: 18228010
[193]
Rosenauer M, Buchegger W, Finoulst I, Verhaert P, Vellekoop M . Microfluid. Nanofluid., 2011,10:761. http://link.springer.com/10.1007/s10404-010-0707-z

doi: 10.1007/s10404-010-0707-z
[194]
Cho S H, Chen C H, Tsa F S, Godin J M, Lo Y H . Lab on a Chip, 2010,10:1567. https://www.ncbi.nlm.nih.gov/pubmed/20379604

doi: 10.1039/c000136h pmid: 20379604
[195]
Schmidt H, Hawkins A R . Nat. Photonics, 2011,5:598. https://doi.org/10.1038/nphoton.2011.163

doi: 10.1038/nphoton.2011.163
[196]
Fan X D, White I M . Nat. Photonics, 2011,5:591. https://www.ncbi.nlm.nih.gov/pubmed/22059090

doi: 10.1038/nphoton.2011.206 pmid: 22059090
[197]
Cubillas A M, Unterkofler S, Euser T G, Etzold B J, Jones A C, Sadler P J, Wasserscheid P, Russell P S J . Chem. Soc. Rev., 2013,42:8629. https://www.ncbi.nlm.nih.gov/pubmed/23753016

doi: 10.1039/c3cs60128e pmid: 23753016
No related articles found!