中文
Announcement
More
Progress in Chemistry 2019, Vol. 31 Issue (2/3): 258-274 DOI: 10.7536/PC180631 Previous Articles   Next Articles

The Design and Application of Quadruple Hydrogen Bonded Systems

Qiang Pei**(), Aixiang Ding   

  1. 1. College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
  • Received: Online: Published:
  • Contact: Qiang Pei
  • About author:
  • Supported by:
    Doctoral Scientific Research Startup Foundation of Xinyang Normal University(18077); Doctoral Scientific Research Startup Foundation of Xinyang Normal University(18072); Key Scientific Research Project of Henan Provincial Higher Educational Institutions(19A150042)
Richhtml ( 22 ) PDF ( 630 ) Cited
Export

EndNote

Ris

BibTeX

Hydrogen bond is one of the most basic weak interaction of natural intermolecular forces and the ideal driving force for constructing supramolecular self-assembly systems. In the past few years, the construction of excellent multiple hydrogen bonded building blocks has become a hot research direction in supramolecular chemistry. Among that, quadruple hydrogen bonded systems are widely used for the construction of supramolecular assemblies due to their several advantages, such as strong binding power, simple synthesis, easily modifiable structure, and predictable recognition performance. In this review, we aim to provide a broad overview of the progress of quadruple hydrogen bonded systems. More specifically, we emphatically elaborate the design principles and applications of various typed quadruple hydrogen bonded systems.

Fig. 1 The stability constants(M-1, in CDCl3) of various typed quadruple hydrogen bonded systems and the secondary interactions between them indicated by double headed arrow(attractive: green; repulsive: red)[3]
Fig. 2 Homologous dimer based on mono acylated 2, 4-diaminopyrimidines[8]
Fig. 3 (a) The stable conformation of 2, 6-bis(carbamoyl) pyridine;(b) the stable conformation of 2, 4-bis(carbamoyl)-s-triazines and its homologous dimer[9]
Fig. 4 The DADA·ADAD typed homologous dimer based on the compounds of s-triazines and pyrimidines and its dimerization constant[10]
Fig. 5 (a) Homologous dimer based on hydrazide-quinolinone unit;(b) conformational equilibrium of open chain compound 9[11]
Fig. 6 The conformational equilibrium of ureido derived 2, 6-diaminopurine in solution and its homologous dimer[12]
Fig. 7 The homologous dimer of compound 11[13]
Fig. 8 Tautomerism and dimerization of UPy derivatives in solution[17]
Fig. 9 Tautomerism and dimerization of DeAP derivatives in solution[23]
Fig. 10 The strategy of restraining proton tautomer: degeneration strategy[25] and N-alkylation strategy[28]
Fig. 11 Quadruple hydrogen-bonded dimer based on UN[29] and UImp[31] units
Fig. 12 Quadruple hydrogen-bonded dimer based on the ureido derivatives of 1, 3, 5-triazine-2, 4(1H, 3H)-dione[32]
Fig. 13 Quadruple hydrogen-bonded dimer based on linear compounds with intramolecular hydrogen bonding controlling conformations[33]
Fig. 14 The homologous dimer of compounds 25a~d and their dimerization constant[34]
Fig. 15 The DAAD·ADDA typed heterodimer between DeAP and DAN[23]
Fig. 16 The DAAD·ADDA typed heterodimer between UPy and DAN[37]
Fig. 17 The DAAD·ADDA typed heterodimer based on UG·DAN and DeUG·DAN[38, 39]
Fig. 18 The DAAD·ADDA typed heterodimer based on 33·34, 35·36 and 37·38 [41,42,43,44,45]
Fig. 19 Quadruple hydrogen-bonded heterodimer based on the non heterocyclic hydrazide units [46, 47]
Fig. 20 The effect of different terminal substituents on the stability of heterodimer based on the hydrazide derivatives[48]
Fig. 21 The AADA·DDAD typed heterodimer between compounds 46 and 47[49]
Fig. 22 The heterodimer with AAAA·DDDD quadruple hydrogen bonding sites [51, 52]
Fig. 23 Quadruple hydrogen-bonded molecular duplexes based on oligoamides [53]
Fig. 24 Quadruple hydrogen-bonded molecular duplexes constructed by oligoamides containing 2, 7-disubstituted naphthalene units[60]
Fig. 25 Quadruple hydrogen-bonded system constructed by the compounds with separated hydrogen bond binding units[62,63,64]
Fig. 26 (a) Quadruple hydrogen-bonded system constructed by the compound with an atom bearing two hydrogen bond sites;(b) dual hydrogen-bonded system constructed by the compound with similar structure to compound 62[65]
Fig. 27 The schematic diagram of molecular recognition of adipic acid by compound 64[66]
Fig. 28 The intramolecular Diels-Alder reaction of compound 66 induced by intermolecular quadruple hydrogen-bonded action[67]
Fig. 29 The reaction of olefin metathesis induced by template of quadruple hydrogen-bonded oligoamides [68]
Fig. 30 The ordered cross-linking reaction of dual disulfide bond induced by template of quadruple hydrogen-bonded oligoamides[70, 71]
Fig. 31 The antiparallel β-folding structure of peptide induced by template of quadruple hydrogen-bonded oligoamides [72, 73]
Fig. 32 The β-hairpin structure induced by quadruple hydrogen-bonded template[74]
Fig. 33 Versatile gelators based on oligoamides[77, 78]
Fig. 34 The dimer of UPy unit modified by oligomerization of p-phenylenevinylene[79]
[1]
Sartorius J, Schneider H J . Chem. Eur. J., 1996,2:1446.
[2]
Schmuck C, Wienand W . Angew. Chem. Int. Ed., 2001,40:4363. https://www.ncbi.nlm.nih.gov/pubmed/12404418

doi: 10.1002/1521-3773(20011203)40:23【-逻*辑*与-】amp;amp;lt;4363::aid-anie4363【-逻*辑*与-】amp;amp;gt;3.0.co;2-8 pmid: 12404418
[3]
Sijbesma R P, Meijer E W . Chem. Commun., 2003,39:5.
[4]
Gong B . Acc. Chem. Res., 2012,45:2077. https://www.ncbi.nlm.nih.gov/pubmed/22578061

doi: 10.1021/ar300007k pmid: 22578061
[5]
Baruah P K, Khan S . RSC Adv., 2013,3:21202. http://xlink.rsc.org/?DOI=c3ra43814g

doi: 10.1039/c3ra43814g
[6]
杨勇(Yang Y), 窦丹丹(Dou D D) . 化学进展 (Progress in Chemistry), 2014,26:706.
[7]
裴强(Pei Q) . 信阳师范学院(自然科学版)(Journal of Xinyang Normal University Natural Science Edition), 2018,31:160.
[8]
Griffin R J, Lowe P R . J. Chem. Soc. Perkin Trans. 1, 1992,1811.
[9]
Beijer F H, Sijbesma R P, Vekemans J A J M, Meijer E W, Kooijman H, Spek A L . J. Org. Chem., 1996,61:6371. https://www.ncbi.nlm.nih.gov/pubmed/11667479

doi: 10.1021/jo960612v pmid: 11667479
[10]
Beijer F H, Kooijman H, Spek A L, Sijbesma R P, Meijer E W . Angew. Chem. Int. Ed., 1998,37:75.
[11]
Yang Y, Yan H J, Chen C F, Wan L J . Org. Lett., 2007,9:4991. https://www.ncbi.nlm.nih.gov/pubmed/17956109

doi: 10.1021/ol702194z pmid: 17956109
[12]
Martin A M, Butler R S, Ghiviriga I, Giessert R E, Abboud K A, Castellano R K . Chem. Commun., 2006,42:4413.
[13]
Li J, Wisner J A, Jennings M C . Org. Lett., 2007,9:3267. https://www.ncbi.nlm.nih.gov/pubmed/17637028

doi: 10.1021/ol071171c pmid: 17637028
[14]
Li J, Pandelieva A T, Rowley C N, Woo T K, Wisner J A . Org. Lett., 2012,14:5772. https://www.ncbi.nlm.nih.gov/pubmed/23131112

doi: 10.1021/ol302803j pmid: 23131112
[15]
Sijbesma R P, Beijer F H, Brunsveld L, Folmer B J B, Hirschberg J H K K, Lange R F M, Lowe J K L, Meijer E W . Science, 1997,278:1601. https://www.ncbi.nlm.nih.gov/pubmed/9374454

doi: 10.1126/science.278.5343.1601 pmid: 9374454
[16]
Beijer F H, Sijbesma R P, Kooijman H, Spek A L, Meijer E W . J. Am. Chem. Soc., 1998,120:6761.
[17]
Söntjens S H M, Sijbesma R P, van Genderen M H P, Meijer E W . J. Am. Chem. Soc., 2000,122:7487.
[18]
Keizer H M, Sijbesma R P, Meijer E W . Eur. J. Org. Chem., 2004: 2553.
[19]
Lafitte V G H, Aliev A E, Hailes H C, Bala K, Golding P . J. Org. Chem., 2005,70:2701. https://www.ncbi.nlm.nih.gov/pubmed/15787562

doi: 10.1021/jo048223l pmid: 15787562
[20]
Guo D, Sijbesma R P, Zuilhof H . Org. Lett., 2004,6:3667. https://www.ncbi.nlm.nih.gov/pubmed/15469319

doi: 10.1021/ol048821m pmid: 15469319
[21]
Chen J S, Zhao F J, Yang Y, Chu T S . RSC Adv., 2015,5:36279.
[22]
Wang Q, Zhang P, Li Y, Tian L, Cheng M, Lu F, Lu X, Fan Q, Huang W . RSC Adv., 2017,7:29364.
[23]
Corbin P S, Zimmerman S C . J. Am. Chem. Soc., 1998,120:9710.
[24]
Corbin P S, Lawless L J, Li Z, Ma Y, Witmer M J, Zimmerman S C . Proc. Natl. Acad. Sci. U. S. A., 2002,99:5099. https://www.ncbi.nlm.nih.gov/pubmed/11917113

doi: 10.1073/pnas.062641199 pmid: 11917113
[25]
Baruah P K, Gonnade R, Phalgune U D, Sanjayan G J . J. Org. Chem., 2005,70:6461. https://www.ncbi.nlm.nih.gov/pubmed/16050710

doi: 10.1021/jo0508705 pmid: 16050710
[26]
Sun H, Steeb J, Kaifer A E . J. Am. Chem. Soc., 2006,128:2820. https://www.ncbi.nlm.nih.gov/pubmed/16506759

doi: 10.1021/ja060386z pmid: 16506759
[27]
Cui L, Gadde S, Shukla A D, Sun H, Mague J T, Kaifer A E . Chem. Commun., 2008,44:1446.
[28]
Lafitte V G H, Aliev A E, Horton P N, Hursthouse M B, Bala K, Golding P, Hailes H C . J. Am. Chem. Soc., 2006,128:6544. https://www.ncbi.nlm.nih.gov/pubmed/16704239

doi: 10.1021/ja0587289 pmid: 16704239
[29]
Corbin P S, Zimmerman S C . J. Am. Chem. Soc., 2000,122:3779.
[30]
Corbin P S, Zimmerman S C, Thiessen P A, Hawryluk N A, Murray T J . J. Am. Chem. Soc., 2001,123:10475. https://www.ncbi.nlm.nih.gov/pubmed/11673978

doi: 10.1021/ja010638q pmid: 11673978
[31]
Hisamatsu Y, Shirai N, Ikeda S, Odashima K . Org. Lett., 2009,11:4342. https://www.ncbi.nlm.nih.gov/pubmed/19739613

doi: 10.1021/ol9017084 pmid: 19739613
[32]
Kheria S, Rayavarapu S, Kotmale A S, Gonnade R G, Sanjayan G J . Chem. Eur. J., 2017,23:783. https://www.ncbi.nlm.nih.gov/pubmed/27862470

doi: 10.1002/chem.201605208 pmid: 27862470
[33]
Prabhakaran P, Puranik V G, Sanjayan G J . J. Org. Chem., 2005,70:10067. https://www.ncbi.nlm.nih.gov/pubmed/16292841

doi: 10.1021/jo051768a pmid: 16292841
[34]
Mudraboyina B P, Wisner J A . Chem. Eur. J., 2012,18:14157. https://www.ncbi.nlm.nih.gov/pubmed/22996084

doi: 10.1002/chem.201201668 pmid: 22996084
[35]
Ligthart G B W L, Ohkawa H, Sijbesma R P, Meijer E W . J. Org. Chem., 2006,71:375. https://www.ncbi.nlm.nih.gov/pubmed/16388663

doi: 10.1021/jo051864b pmid: 16388663
[36]
Anderson C A, Taylor P G, Zeller M A, Zimmerman S C . J. Org. Chem., 2010,75:4848. https://www.ncbi.nlm.nih.gov/pubmed/20550204

doi: 10.1021/jo100476x pmid: 20550204
[37]
Li X Q, Jiang X K, Wang X Z, Li Z T . Tetrahedron, 2004,60:2063.
[38]
Park T, Todd E M, Nakashima S, Zimmerman S C . J. Am. Chem. Soc., 2005,127:18133. https://www.ncbi.nlm.nih.gov/pubmed/16366566

doi: 10.1021/ja0545517 pmid: 16366566
[39]
Ong H C, Zimmerman S C . Org. Lett., 2006,8:1589. https://www.ncbi.nlm.nih.gov/pubmed/16597117

doi: 10.1021/ol0601803 pmid: 16597117
[40]
Kuykendall D W, Anderson C A, Zimmerman S C . Org. Lett., 2009,11:61. https://www.ncbi.nlm.nih.gov/pubmed/19049402

doi: 10.1021/ol802344w pmid: 19049402
[41]
Lüning U, Kühl C . Tetra. Lett., 1998,39:5735.
[42]
Lüning U, Kühl C, Uphoff A . Eur. J. Org. Chem., 2002: 4063.
[43]
Taubitz J, Lüning U, Grotemeyer J . Chem. Commun., 2004,40:2400.
[44]
Hisamatsu Y, Shirai N, Ikeda S, Odashima K . Org. Lett., 2010,12:1776. https://www.ncbi.nlm.nih.gov/pubmed/20232854

doi: 10.1021/ol100385b pmid: 20232854
[45]
Pellizzaro M L, Barrett S A, Fishera J, Wilson A J . Org. Biomol. Chem., 2012,10:4899. https://www.ncbi.nlm.nih.gov/pubmed/22610090

doi: 10.1039/c2ob25333j pmid: 22610090
[46]
Zhao X, Wang X Z, Jiang X K, Chen Y Q, Li Z T, Chen G J . J. Am. Chem. Soc., 2003,125:15128.
[47]
Feng D J, Wang P, Li X Q, Li Z T . Chin. J. Chem., 2006,24:1200.
[48]
Yang Y, Yang Z Y, Yi Y P, Xiang J F, Chen C F, Wan L J, Shuai Z G . J. Org. Chem., 2007,72:4936. https://www.ncbi.nlm.nih.gov/pubmed/17530806

doi: 10.1021/jo070525a pmid: 17530806
[49]
Brammer S, Lüning U, Kühl C . Eur. J. Org. Chem., 2002: 4054.
[50]
Quinn J R, Zimmerman S C . Org. Lett., 2004,6:1649. https://www.ncbi.nlm.nih.gov/pubmed/15128258

doi: 10.1021/ol0495016 pmid: 15128258
[51]
Taubitz J, Lüning U . Aust. J. Chem., 2009,62:1550.
[52]
Leigh D A, Robertson C C, Slawin A M Z, Thomson P I T . J. Am. Chem. Soc., 2013,135:9939. https://www.ncbi.nlm.nih.gov/pubmed/23763627

doi: 10.1021/ja404504m pmid: 23763627
[53]
Gong B, Yan Y F, Zeng H Q, Skrzypczak-Jankunn E, Kim Y W, Zhu J, Ickes H . J. Am. Chem. Soc., 1999,121:5607.
[54]
Gong B . Synlett, 2001,5:582.
[55]
Sanford A R, Yamato K, Yang X W, Yuan L H, Han Y H, Gong B . Eur. J. Biochem., 2004,271:1416. https://www.ncbi.nlm.nih.gov/pubmed/15066168

doi: 10.1111/j.1432-1033.2004.04062.x pmid: 15066168
[56]
Zeng H Q, Ickes H, Flowers R A, Gong B . J. Org. Chem., 2001,66:3574. https://www.ncbi.nlm.nih.gov/pubmed/11348147

doi: 10.1021/jo010250d pmid: 11348147
[57]
Zeng H Q, Yang X W, Brown A L, Martinovic S, Smith R D, Gong B . Chem. Commun., 2003,39:1556
[58]
Yang Q L, Bai L, Zhang Y Q, Zhu F X, Xu Y H, Shao Z F, Shen Y M, Gong B . Macromolecules, 2014,47:7431.
[59]
Yang Q L, He C Y, Xu Y H, Liu B Y, Shao Z F, Zhu Z G, Hou Y T, Gong B, Shen Y M . Polym. Chem., 2015,6:1454.
[60]
Zhang P H, Chu H Z, Li X H, Feng W, Deng P C, Yuan L H, Gong B . Org. Lett., 2011,13:54. https://www.ncbi.nlm.nih.gov/pubmed/21133401

doi: 10.1021/ol102522m pmid: 21133401
[61]
Li X H, Ji Y M, Ren Y, Wang Y J, Hu J C, Ma T, Feng W, Yuan L H . Org. Biomol. Chem., 2013,11:6975. https://www.ncbi.nlm.nih.gov/pubmed/24057168

doi: 10.1039/c3ob40998h pmid: 24057168
[62]
Ducharme Y, Wuest J D . J. Org. Chem., 1988,53:5787.
[63]
Wash P L, Maverick E, Chiefari J, Lightner D A . J. Am. Chem. Soc., 1997,119:3802.
[64]
Sessler J L, Wang R . J. Am. Chem. Soc., 1996,118:9808.
[65]
Davis A P, Draper S M, Dunne G, Ashton P . Chem. Commun., 1999,35:2265.
[66]
Garcia-Tellado F, Goswami S, Chang S, Geib S J, Hamilton A D . J. Am. Chem. Soc., 1990,112:7393.
[67]
Hirst S C, Hamilton A D . J. Am. Chem. Soc., 1991,113:382.
[68]
Yang X W, Gong B . Angew. Chem. Int. Ed., 2005,44:1352. https://www.ncbi.nlm.nih.gov/pubmed/15662671

doi: 10.1002/anie.200461777 pmid: 15662671
[69]
Zeng J S, Wang W, Deng P C, Feng W, Zhou J J, Yang Y Y, Yuan L H, Yamato K, Gong B . Org. Lett., 2011,13:3798. https://www.ncbi.nlm.nih.gov/pubmed/21699249

doi: 10.1021/ol201282d pmid: 21699249
[70]
Li M F, Yamato K, Ferguson J S, Gong B . J. Am. Chem. Soc., 2006,128:12628. https://www.ncbi.nlm.nih.gov/pubmed/17002339

doi: 10.1021/ja064515n pmid: 17002339
[71]
Li M F, Yamato K, Ferguson J S, Gong B . J. Am. Chem. Soc., 2008,130:491. https://www.ncbi.nlm.nih.gov/pubmed/18092773

doi: 10.1021/ja072567m pmid: 18092773
[72]
Zeng H Q, Yang X W, Flowers R A, Gong B . J. Am. Chem. Soc., 2002,124:2903. https://www.ncbi.nlm.nih.gov/pubmed/11902880

doi: 10.1021/ja010701b pmid: 11902880
[73]
Shi Y D, Tang Q, Jiang Y F, Pei Q, Tan H W, Lu Z L, Gong B . Chem. Commun., 2018,54:3719. https://www.ncbi.nlm.nih.gov/pubmed/29583145

doi: 10.1039/c8cc01564c pmid: 29583145
[74]
Mozhdehi D, Guan Z B . Chem. Commun., 2013,49:9950. https://www.ncbi.nlm.nih.gov/pubmed/24036525

doi: 10.1039/c3cc45419c pmid: 24036525
[75]
Han J T, Lee D H, Ryu C Y, Cho K . J. Am. Chem. Soc., 2004,126:4796. https://www.ncbi.nlm.nih.gov/pubmed/15080681

doi: 10.1021/ja0499400 pmid: 15080681
[76]
Xu J F, Chen Y Z, Wu D, Wu L Z, Tung C H, Yang Q Z . Angew. Chem. Int. Ed., 2013,52:9738. https://www.ncbi.nlm.nih.gov/pubmed/23868534

doi: 10.1002/anie.201303496 pmid: 23868534
[77]
Cao R K, Zhou J J, Wang W, Feng W, Li X H, Zhang P H, Deng P C, Yuan L H, Gong B . Org. Lett., 2010,12:2958. https://www.ncbi.nlm.nih.gov/pubmed/20536121

doi: 10.1021/ol100953e pmid: 20536121
[78]
Pei Q, Tang Q, Tan Z L, Lu Z L, He L, Gong B . RSC Adv., 2017,7:22248.
[79]
El-ghayoury A, Peeters E, Schenning A P H J, Meijer E W . Chem. Commun., 2000,36:1969.
[80]
Rispens M T, Sánchez L, Knol J, Hummelen J C . Chem. Commun., 2001,37:161.
[81]
Sánchez L, Rispens M T, Hummelen J C . Angew. Chem. Int. Ed., 2002,41:838. https://www.ncbi.nlm.nih.gov/pubmed/12491353

doi: 10.1002/1521-3773(20020301)41:5【-逻*辑*与-】amp;amp;lt;838::aid-anie838【-逻*辑*与-】amp;amp;gt;3.0.co;2-f pmid: 12491353
[82]
González J J, González S, Priego E M, Luo C, Guldi D M, de Mendoza J, Martín N . Chem. Commun., 2001,37:163.
[83]
Sánchez L, Martín N, Guldi D M . Angew. Chem. Int. Ed., 2005,44:5374. https://www.ncbi.nlm.nih.gov/pubmed/15997460

doi: 10.1002/anie.200500321 pmid: 15997460
[84]
Zhu B, Feng Z, Zheng Z, Wang X . J. Appl. Polym. Sci., 2012,123:1755. 461129bb-551e-48fa-b09f-86f4f2576f10http://dx.doi.org/10.1002/app.34638

doi: 10.1002/app.34638
[85]
Chen Y, Jones S T, Hancox I, Beanland R, Tunnah E J, Bon S A F . ACS Macro Lett., 2012,1:603.
[86]
Chen Y, Ballard N Bon S A F . Polym. Chem., 2013,4:387.
[87]
Xiao L, Wei M, Zhan M, Zhang J, Xie H, Deng X, Yang K, Wang Y . Polym. Chem., 2014,5:2231.
[88]
Lange R F M, Van Gurp M, Meijer E W . J. Polym. Sci., Part A: Polym. Chem., 1999,37:3657. https://www.ncbi.nlm.nih.gov/pubmed/31244507

doi: 10.1002/pola.29393 pmid: 31244507
[89]
Hirschberg J H K K, Beijer F H, van Aert H A, Magusin P C M M, Sijbesma R P, Meijer E W . Macromolecules, 1999,32:2696.
[90]
Folmer B J B, Sijbesma R P, Versteegen R M, van der Rijt J A J, Meijer E W . Adv. Mater., 2000,12:874.
[91]
Folmer B J B, Cavini E, Sijbesma R P, Meijer E W . Chem. Commun., 1998,34:1847.
[92]
Peng H Q, Sun C L, Xu J F, Niu L Y, Chen Y Z, Wu L Z, Tung C H, Yang Q Z . Chem. Eur. J., 2014,20:11699. https://www.ncbi.nlm.nih.gov/pubmed/25056769

doi: 10.1002/chem.201402955 pmid: 25056769
[93]
Xu J F, Niu L Y, Chen Y Z, Wu D, Wu L Z, Tung C H, Yang Q Z . Org. Lett., 2014,16:4016. https://www.ncbi.nlm.nih.gov/pubmed/25035966

doi: 10.1021/ol501841f pmid: 25035966
[94]
Peng H Q, Xu J F, Chen Y Z, Wu L Z, Tung C H, Yang Q Z . Chem. Commun., 2014,50:1334.
[95]
Wang R F, Peng H Q, Chen P Z, Niu L Y, Gao J F, Wu L Z, Tung C H, Chen Y Z, Yang Q Z . Adv. Funct. Mater., 2016,26:5419.
[96]
Peng H Q, Sun C L, Niu L Y, Chen Y Z, Wu L Z, Tung C H, Yang Q Z . Adv. Funct. Mater., 2016,26:5483.
[97]
Park T, Zimmerman S C, Nakashima S . J. Am. Chem. Soc., 2005,127:6520. https://www.ncbi.nlm.nih.gov/pubmed/15869258

doi: 10.1021/ja050996j pmid: 15869258
[98]
Park T, Zimmerman S C . J. Am. Chem. Soc., 2006,128:11582. https://www.ncbi.nlm.nih.gov/pubmed/16939282

doi: 10.1021/ja0631854 pmid: 16939282
[99]
Park T, Zimmerman S C . J. Am. Chem. Soc., 2006,128:14236. https://www.ncbi.nlm.nih.gov/pubmed/17076479

doi: 10.1021/ja065469u pmid: 17076479
[100]
Park T, Zimmerman S C . J. Am. Chem. Soc., 2006,128:13986. https://www.ncbi.nlm.nih.gov/pubmed/17061855

doi: 10.1021/ja064116s pmid: 17061855
[101]
Li Y, Park T, Quansah J K, Zimmerman S C . J. Am. Chem. Soc., 2011,133:17118. https://www.ncbi.nlm.nih.gov/pubmed/21970558

doi: 10.1021/ja2069278 pmid: 21970558
[102]
Zhang Y, Anderson C A, Zimmerman S C . Org. Lett., 2013,15:3506. https://www.ncbi.nlm.nih.gov/pubmed/23815128

doi: 10.1021/ol401035t pmid: 23815128
[103]
Anderson C A, Jones A R, Briggs E M, Novitsky E J, Kuykendall D W, Sottos N R, Zimmerman S C . J. Am. Chem. Soc., 2013,135:7288. https://www.ncbi.nlm.nih.gov/pubmed/23590235

doi: 10.1021/ja4005283 pmid: 23590235
[104]
Hirschberg J H K K, Brunsveld L, Ramzi A, Vekemans J A J M, Sijbesma R P, Meijer E W . Nature, 2000,407:167. https://www.ncbi.nlm.nih.gov/pubmed/11001050

doi: 10.1038/35025027 pmid: 11001050
[105]
Brunsveld L, Vekemans J A J M, Hirschberg J H K K, Sijbesma R P, Meijer E W . Proc. Natl. Acad. Sci. U. S. A., 2002,99:4977. https://www.ncbi.nlm.nih.gov/pubmed/11929978

doi: 10.1073/pnas.072659099 pmid: 11929978
[106]
Yan X, Li S, Pollock J B, Cook T R, Chen J, Zhang Y, Ji X, Yu Y, Huang F, Stang P J . Proc. Natl. Acad. Sci. U. S. A., 2013,110:15585. https://www.ncbi.nlm.nih.gov/pubmed/24019475

doi: 10.1073/pnas.1307472110 pmid: 24019475
[107]
Yan X, Jiang B, Cook T R, Zhang Y, Li J, Yu Y, Huang F, Yang H, Stang P J . J. Am. Chem. Soc., 2013,135:16813. https://www.ncbi.nlm.nih.gov/pubmed/24187961

doi: 10.1021/ja4092193 pmid: 24187961
[108]
Liu R, Cheng S, Baker E S, Smith R D, Zeng X C, Gong B . Chem. Commun., 2016,52:3773. https://www.ncbi.nlm.nih.gov/pubmed/26830456

doi: 10.1039/c6cc00224b pmid: 26830456
[1] Xianwen Wu, Fengni Long, Yanhong Xiang, Jianbo Jiang, Jianhua Wu, Lizhi Xiong, Qiaobao Zhang. Research Progress of Anode Materials for Zinc-Based Aqueous Battery in a Neutral or Weak Acid System [J]. Progress in Chemistry, 2021, 33(11): 1983-2001.
[2] Yawen Li, Wantong Ao, Huilin Jin, Liping Cao. Aggregation-Induced Emission of Tetraphenylethene Derivatives with Macrocycles via Host-Guest Interactions [J]. Progress in Chemistry, 2019, 31(1): 121-134.
[3] Xiang Wang*. Macrocyclic and Supramolecular Chemistry: From Heteracalixaromatics to Coronarenes——In Memory of Professor Zhi-Tang Huang [J]. Progress in Chemistry, 2018, 30(5): 463-475.
[4] Lishan Peng, Zidong Wei*. Design and Product Engineering of High-Performance Electrode Catalytic Materials for Water Electrolysis [J]. Progress in Chemistry, 2018, 30(1): 14-28.
[5] Deng Nanping, Ma Xiaomin, Ruan Yanli, Wang Xiaoqing, Kang Weimin, Cheng Bowen. Research and Prospect of Lithium-Sulfur Battery System [J]. Progress in Chemistry, 2016, 28(9): 1435-1454.
[6] Dong Yunhong, Cao Liping. Functionalization of Cucurbit uril [J]. Progress in Chemistry, 2016, 28(7): 1039-1053.
[7] Xia Mengchan, Yang Yingwei. Organic Functional Materials Based on Pillarenes [J]. Progress in Chemistry, 2015, 27(6): 655-665.
[8] Qian Xiaohong, Jin Can, Zhang Xiaoning, Jiang Yan, Lin Chen, Wang Leyong. Squaramide Derivatives and Their Applications in Ion Recognition [J]. Progress in Chemistry, 2014, 26(10): 1701-1711.
[9] Yang Yong, Dou Dandan. Triply and Quadruply Hydrogen Bonded Systems:Design, Structure and Application [J]. Progress in Chemistry, 2014, 26(05): 706-726.
[10] Xu Liang, Li Yongjun, Li Yuliang. Preparation and Application of Supramolecular Functional Materials Based on π System [J]. Progress in Chemistry, 2014, 26(04): 487-501.
[11] Yang Liu, Lei Ting, Pei Jian*, Liu Chenjiang* . Design Strategy , Processing and Applications of Organic Micro- and Nano-Materials [J]. Progress in Chemistry, 2012, 24(12): 2299-2311.
[12] Liu Zhicheng, Wang Hong, Yang Rui, Li Wei. Synthesis and Application of Phosphorous-Containing Calixarenes and Their Complexes [J]. Progress in Chemistry, 2011, 23(8): 1665-1682.
[13] Shen Xinghai, Zhang Jingjing, Gao Song, Fu Suzhen, Sun Taoxiang, Fu Jing, Zhang Hongjuan, Chen Qingde, Gao Hongcheng. Applications of Typical Supramolecular Systems in the Field of Radiochemistry [J]. Progress in Chemistry, 2011, 23(7): 1386-1399.
[14] Cao Jing, Jiang Yi, Chen Chuan-Feng. Advances on Synthesis and Applications of Iptycenes and Their Derivatives [J]. Progress in Chemistry, 2011, 23(11): 2200-2214.
[15] Wan Decheng, Jin Ming, Pu Hongting. Supramolecular Fuzzy Recognition [J]. Progress in Chemistry, 2011, 23(10): 2095-2102.