中文
Announcement
More
Progress in Chemistry 2018, Vol. 30 Issue (10): 1548-1556 DOI: 10.7536/PC180610 Previous Articles   Next Articles

• Review •

Application of Phosphorescent Cyclometalated Iridium(Ⅲ) Complexes in Cancer Treatment

Liang He1, Caiping Tan1, Qian Cao1, Zongwan Mao1,2*   

  1. 1. School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China;
    2. College of Materials and Energy, South China Agricutural University, Guangzhou 510642, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No. 21231007, 21701195) and the Guangdong Natural Science Foundation(No. 2017A030310278).
PDF ( 743 ) Cited
Export

EndNote

Ris

BibTeX

Due to the excellent phosphorescent properties, the coordinatively saturated and substitutionally inert cyclometalated iridium(Ⅲ) complexes have been widely used in biological imaging and biosensing. In recent years, the application of this kind of iridium(Ⅲ) complexes in cancer treatment has attracted wide attention due to its anticancer efficacy and novel mechanisms. Recent advances of phosphorescent cyclometalated iridium(Ⅲ) complexes of the formula [Ir(C^N)2(N^N)]+ in anticancer chemotherapy and photodynamic therapy (PDT) are reviewed in this article. The iridium(Ⅲ) complexes targeting different organelles or as protein-protein interactions inhibitors or being applied in one-photon and two-photon PDT are summarized and discussed, which provides guidance for the development of new metal-based anticancer drugs. Finally, the development and application of phosphorescent cyclometalated iridium(Ⅲ) complexes in cancer treatment is discussed and prospected.
Contents
1 Introduction
2 Organelle-targeted phosphorescent anticancer cyclometalated iridium (Ⅲ) complexes
2.1 Mitochondria-targeted
2.2 Lysosome-targeted
2.3 Other organelles-targeted
3 Cyclometalated iridium(Ⅲ) complexes as protein-protein interactions inhibitors
4 Cyclometalated iridium(Ⅲ) complexes used in photodynamic therapy(PDT)
4.1 Mechanisms
4.2 One-photon PDT
4.3 Two-photon PDT
5 Conclusion and outlook

CLC Number: 

[1] Chen W Q, Zheng R S, Baade P D, Zhang S W, Zeng H M, Bray F, Jemal A, Yu X Q, He J. CA Cancer J. Clin., 2016, 66:115.
[2] Einhorn L H. J. Clin. Oncol., 1990, 8:1777.
[3] Jayson G C, Kohn E C, Kitchener H C, Ledermann J A. Lancet, 2014, 384:1376.
[4] Waggoner S E. Lancet, 2003, 361:2217.
[5] Argyriou A A, Polychronopoulos P, Iconomou G, Chroni E, Kalofonos H P. Cancer Treat. Rev., 2008, 34:368.
[6] Zhang C X, Lippard S J. Curr. Opin. Chem. Biol., 2003, 7:481.
[7] Kaluderovic G N, Paschke R. Curr. Med. Chem., 2011, 18:4738.
[8] van Rijt S H, Sadler P J. Drug Discov. Today, 2009, 14:1089.
[9] Fricker S P. Dalton Trans., 2007, 43:4903.
[10] Komeda S, Casini A. Curr. Top. Med. Chem., 2012, 12:219.
[11] Ma D L, He H Z, Leung K H, Chan D S, Leung C H. Angew. Chem. Int. Ed., 2013, 52:7666.
[12] Leung C H, Zhong H J, Chan D S H, Ma D L. Coord. Chem. Rev., 2013, 257:1764.
[13] Zhao Q, Huang C H, Li F Y. Chem. Soc. Rev., 2011, 40:2508.
[14] Lo K K W, Zhang K Y. Rsc Adv., 2012, 2:12069.
[15] You Y M, Cho S, Nam W W. Inorg. Chem., 2014, 53:1804.
[16] Zamora A, Vigueras G, Rodríguez V, Santana M D, Ruiz J. Coord. Chem. Rev., 2018, 360:34.
[17] You Y M. J. Chin. Chem. Soc., 2018, 65:352.
[18] Gao R M, Ho D G, Hernandez B, Selke M, Murphy D, Djurovich P I, Thompson M E. J. Am. Chem. Soc., 2002, 124:14828.
[19] You Y M. Curr. Opin. Chem. Biol., 2013, 17:699.
[20] Ma D L, Chan D S, Leung C H. Acc. Chem. Res., 2014, 47:3614.
[21] Vyas S, Zaganjor E, Haigis M C. Cell, 2016, 166:555.
[22] Fulda S, Galluzzi L, Kroemer G. Nat. Rev. Drug Discov., 2010, 9:447.
[23] Cao J J, Tan C P, Chen M H, Wu N, Yao D Y, Liu X G, Ji L N, Mao Z W. Chem. Sci., 2017, 8:631.
[24] Ye R R, Tan C P, Ji L N, Mao Z W. Dalton Trans., 2016, 45:13042.
[25] Youle R J, Narendra D P. Nat. Rev. Mol. Cell Biol., 2011, 12:9.
[26] Chen M H, Wang F X, Cao J J, Tan C P, Ji L N, Mao Z W. ACS Appl. Mater. Interfaces, 2017, 9:13304.
[27] Ye R R, Cao J J, Tan C P, Ji L N, Mao Z W. Chem. -Eur. J., 2017, 23:15166.
[28] He L, Wang K N, Zheng Y, Cao J J, Zhang M F, Tan C P, Ji L N, Mao Z W. Dalton Trans., 2018, 47:6942.
[29] Ouyang M, Zeng L L, Huang H Y, Jin C Z, Liu J P, Chen Y, Ji L N, Chao H. Dalton Trans., 2017, 46:6734.
[30] Weerasinghe P, Buja L M. Exp. Mol. Pathol., 2012, 93:302.
[31] Guan R L, Chen Y, Zeng L L, Rees T W, Jin C Z, Huang J J, Chen Z S, Ji L N, Chao H. Chem. Sci., 2018,9:5183.
[32] Venkatesh V, Berrocal-Martin R, Wedge C J, Romero-Canelon I, Sanchez-Cano C, Song J I, Coverdale J P C, Zhang P, Clarkson G J, Habtemariam A, Magennis S W, Deeth R J, Sadler P J. Chem. Sci., 2017, 8:8271.
[33] Saftig P, Sandhoff K. Nature, 2013, 502:312.
[34] Li S P Y, Tang T S M, Yiu K S M, Lo K K W. Chem. -Eur. J., 2012, 18:13342.
[35] He L, Liao S Y, Tan C P, Lu Y Y, Xu C X, Ji L N, Mao Z W. Chem. Commun., 2014, 50:5611.
[36] He L, Tan C P, Ye R R, Zhao Y Z, Liu Y H, Zhao Q, Ji L N, Mao Z W. Angew. Chem. Int. Ed., 2014, 53:12137.
[37] Cao R, Jia J L, Ma X C, Zhou M, Fei H. J. Med. Chem., 2013, 56:3636.
[38] Yellol J, Perez S A, Yellol G, Zajac J, Donaire A, Vigueras G, Novohradsky V, Janiak C, Brabec V, Ruiz J. Chem. Commun., 2016, 52:14165.
[39] Novohradsky V, Zamora A, Gandioso A, Brabec V, Ruiz J, Marchan V. Chem. Commun., 2017, 53:5523.
[40] Pracharova J, Vigueras G, Novohradsky V, Cutillas N, Janiak C, Kostrhunova H, Kasparkova J, Ruiz J, Brabec V. Chem. -Eur. J., 2018, 24:4607.
[41] Gamba I, Salvadó I, Brissos R F, Gamez P, Brea J, Loza M I, Vázquez M E, Vázquez López M. Chem. Commun., 2016, 52:1234.
[42] Salvadó I, Gamba I, Montenegro J, Martinez-Costas J, Brea J M, Loza M I, Vázquez López M, Vázquez M E. Chem. Commun., 2016, 52:11008.
[43] Scott D E, Bayly A R, Abell C, Skidmore J. Nat. Rev. Drug Discov., 2016, 15:533.
[44] Leung C H, Zhong H J, Yang H, Cheng Z, Chan D S, Ma V P, Abagyan R, Wong C Y, Ma D L. Angew. Chem. Int. Ed., 2012, 51:9010.
[45] Zhong H J, Lu L H, Leung K H, Wong C C L, Peng C, Yan S C, Ma D L, Cai Z W, Wang H M D, Leung C H. Chem. Sci., 2015, 6:5400.
[46] Liu L J, Wang W, Huang S Y, Hong Y, Li G, Lin S, Tian J, Cai Z, Wang H D, Ma D L, Leung C H. Chem. Sci., 2017, 8:4756.
[47] Liu L J, He B, Miles J A, Wang W, Mao Z, Che W I, Lu J J, Chen X P, Wilson A J, Ma D L, Leung C H. Oncotarget, 2016, 7:13965.
[48] Dolmans D E, Fukumura D, Jain R K. Nat. Rev. Cancer, 2003, 3:380.
[49] Agostinis P, Berg K, Cengel K A, Foster T H, Girotti A W, Gollnick S O, Hahn S M, Hamblin M R, Juzeniene A, Kessel D, Korbelik M, Moan J, Mroz P, Nowis D, Piette J, Wilson B C, Golab J. CA Cancer J. Clin., 2011, 61:250.
[50] You Y M, Nam W W. Chem. Soc. Rev., 2012, 41:7061.
[51] Jiang X P, Zhu N B, Zhao D H, Ma Y G. Sci. China Chem., 2016, 59, 40.
[52] Lerch M M, Hansen M J, van Dam G M, Szymanski W, Feringa B L. Angew. Chem. Int. Ed., 2016, 55:10978.
[53] Li S P, Lau C T, Louie M W, Lam Y W, Cheng S H, Lo K K. Biomaterials, 2013, 34:7519.
[54] Moromizato S, Hisamatsu Y, Suzuki T, Matsuo Y, Abe R, Aoki S. Inorg. Chem., 2012, 51:12697.
[55] Kando A, Hisamatsu Y, Ohwada H, Itoh T, Moromizato S, Kohno M, Aoki S. Inorg. Chem., 2015, 54:5342.
[56] He L, Li Y, Tan C P, Ye R R, Chen M H, Cao J J, Ji L N, Mao Z W. Chem. Sci., 2015, 6:5409.
[57] Ye R R, Tan C P, He L, Chen M H, Ji L N, Mao Z W. Chem. Commun., 2014, 50:10945.
[58] Jing Y, Cao Q, Hao L, Yang G G, Hu W L, Ji L N, Mao Z W. Chem. Commun., 2018, 54:271.
[59] Lv W, Zhang Z, Zhang K Y, Yang H, Liu S, Xu A, Guo S, Zhao Q, Huang W. Angew. Chem. Int. Ed., 2016, 55:9947.
[60] Gu B, Wu W B, Xu G X, Feng G X, Yin F, Chong P H J, Qu J L, Yong K T, Liu B. Adv. Mater., 2017, 29:1701076.
[61] Boreham E M, Jones L, Swinburne A N, Blanchard-Desce M, Hugues V, Terryn C, Miomandre F, Lemercier G, Natrajan L S. Dalton Trans., 2015, 44:16127.
[62] Nam J S, Kang M G, Kang J, Park S Y, Lee S J C, Kim H T, Seo J K, Kwon O H, Lim M H, Rhee H W, Kwon T H. J. Am. Chem. Soc., 2016, 138:10968.
[63] McKenzie L K, Sazanovich I V, Baggaley E, Bonneau M, Guerchais V, Williams J A, Weinstein J A, Bryant H E. Chem. -Eur. J., 2017, 23:234.
[64] Tian X H, Zhu Y H, Zhang M Z, Luo L, Wu J Y, Zhou H P, Guan L J, Battaglia G, Tian Y P. Chem. Commun., 2017, 53:3303.
[65] Liu J P, Jin C Z, Yuan B, Liu X G, Chen Y, Ji L N, Chao H. Chem. Commun., 2017, 53:2052.
[1] Zixuan Liao, Yuhui Wang, Jianping Zheng. Research Advance of Carbon-Dots Based Hydrophilic Room Temperature Phosphorescent Composites [J]. Progress in Chemistry, 2023, 35(2): 263-373.
[2] Shunxin Gu, Qin Jiang, Pengfei Shi. Antitumor Activity and Application of Luminescent Iridium(Ⅲ) Complexes [J]. Progress in Chemistry, 2022, 34(9): 1957-1971.
[3] Jinfeng Wang, Aisen Li, Zhen Li. The Progress of Room Temperature Phosphorescent Gel [J]. Progress in Chemistry, 2022, 34(3): 487-498.
[4] Lingxiang Guo, Juping Li, Zhiyang Liu, Quan Li. Photosensitizers with Aggregation-Induced Emission for Mitochondrion-Targeting Photodynamic Therapy [J]. Progress in Chemistry, 2022, 34(11): 2489-2502.
[5] Zhuke Gong, Hui Xu. Crystalline Carbazole Based Organic Room-Temperature Phosphorescent Materials [J]. Progress in Chemistry, 2022, 34(11): 2432-2461.
[6] Zilin Zhu, Zhongxian Fan, Mengzhao Miao, Huaiyi Huang. Photodynamic Therapy of Hypoxic Tumors with Ir(Ⅲ) Complexes [J]. Progress in Chemistry, 2021, 33(9): 1473-1481.
[7] Fei Ren, Jianbing Shi, Bin Tong, Zhengxu Cai, Yuping Dong. Near Infrared Fluorescent Dyes with Aggregation-Induced Emission [J]. Progress in Chemistry, 2021, 33(3): 341-354.
[8] Zitao Hu, Yin Ding. Application of Covalent Organic Framework-Based Nanosystems in Biomedicine [J]. Progress in Chemistry, 2021, 33(11): 1935-1946.
[9] Yunxue Xu, Renfu Liu, Kun xu, Zhifei Dai. Fluorescent Probes for Intraoperative Navigation [J]. Progress in Chemistry, 2021, 33(1): 52-65.
[10] Ziru Sun, Shengnan Liu, Qingzhi Gao. Development of Anticancer Drugs Targeting Glucose Transporters(GLUTs) [J]. Progress in Chemistry, 2020, 32(12): 1869-1878.
[11] Xinyi Lai, Zhiyong Wang, Yongtai Zheng, Yongming Chen. Nanoscale Metal Organic Frameworks for Drug Delivery [J]. Progress in Chemistry, 2019, 31(6): 783-790.
[12] Xiaohong Chen, Yunzhong Wang, Yongming Zhang, Wangzhang Yuan. Clustering-Triggered Emission of Nonconventional Luminophores [J]. Progress in Chemistry, 2019, 31(11): 1560-1575.
[13] Jinbo Fei, Qi Li, Jie Zhao, Junbai Li. Optical Properties and Potential Applications of Diphenylalanine Dipeptide-Based Assemblies [J]. Progress in Chemistry, 2019, 31(1): 30-37.
[14] Bingde Zheng, Yuanyuan Zhao, Hongcai Li, Biyuan Zheng, Meirong Ke, Jiandong Huang*. Activatable Photodynamic Anticancer Photosensitizers [J]. Progress in Chemistry, 2018, 30(9): 1403-1414.
[15] Hong Li, Yuanyuan Zhao, Haonan Peng. Dopamine Based Nanomaterials for Biomedical Applications [J]. Progress in Chemistry, 2018, 30(8): 1228-1241.