中文
Announcement
More
Progress in Chemistry 2018, Vol. 30 Issue (10): 1592-1600 DOI: 10.7536/PC180609 Previous Articles   

• Review •

Neurotoxicity of Key Metals in Parkinson's Disease

Hui Huang1,2, Jun Chen1,2, Huiru Lu1, Mengxue Zhou1,2, Yi Hu1,2*, Zhifang Chai1,2,3   

  1. 1. Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China;
    3. School for Radiological and Interdisciplinary Sciences(RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No. 11375213, 21390411).
PDF ( 333 ) Cited
Export

EndNote

Ris

BibTeX

As China's aging population continues to increase, it is estimated that people with Parkinson's disease (PD) in China account for about half of PD cases in the world. Therefore, PD has become one of the fastest growing threats to public health in China. Currently, there is no cure for PD. The etiology and pathogenesis of PD remain elusive. Metal dyshomeostasis and oxidative stress are deemed as important risk factors for PD. Herein, recent advances in the neurotoxicity of key metals in PD are reviewed, and possible mechanisms underlying iron/copper-mediated neuron lesion are discussed. In addition, the application of synchrotron radiation in elemental analysis and mechanistic study of PD are briefly introduced. Lastly, the challenges and perspectives for bioinorganic chemistry in PD are discussed.
Contents
1 Introduction
2 The issues of bioinorganic chemistry in Parkinson's disease
2.1 Oxidative stress
2.2 Metal homeostasis
3 Iron in Parkinson's disease
3.1 Ferroptosis
3.2 Interaction between iron cations and proteins
3.3 Iron chelators
4 Copper in Parkinson's disease
4.1 Copper homeostasis
4.2 Interaction between cupric ions and α-synuclein
5 The application of synchrotron radiation-based elemental analysis to Parkinson's disease
6 Conclusion and outlook

CLC Number: 

[1] Burbulla L F, Song P, Mazzulli J R, Zampese E, Wong Y C, Jeon S, Santos D P, Blanz J, Obermaier C D, Strojny C, Savas J N, Kiskinis E, Zhuang X, Kruger R, Surmeier D J, Krainc D. Science, 2017, 357:1255.
[2] Mittal S, Bjornevik K, Im D S, Flierl A, Dong X, Locascio J J, Abo K M, Long E, Jin M, Xu B, Xiang Y K, Rochet J C, Engeland A, Rizzu P, Heutink P, Bartels T, Selkoe D J, Caldarone B J, Glicksman M A, Khurana V, Schule B, Park D S, Riise T, Scherzer C R. Science, 2017, 357:891.
[3] Hu Y, Tong Y R. Sci. Signal., 2010, 3:pe13.
[4] 刘疏影(Liu S Y), 陈彪(Chan P). 中国现代神经疾病杂志(Chinese Journal of Contemporary Neurology and Neurosurgery), 2016, 16:98.
[5] Ascherio A, Schwarzschild M A. Lancet Neurol., 2016, 15:1257.
[6] Lan A P, Chen J, Chai Z F, Hu Y. Biometals, 2016, 29:665.
[7] Liu Y, Li H P, Xie J, Zhou M X, Huang H, Lu H R, Chai Z F, Chen J, Hu Y. Biomater. Sci., 2017, 5:1022.
[8] Guzman J N, Sanchez-Padilla J, Wokosin D, Kondapalli J, Ilijic E, Schumacker P T, Surmeier D J. Nature, 2010, 468:696.
[9] Li Y, Ren M, Wang X Q, Cui X X, Zhao H M, Zhao C R, Zhou J, Guo Y A, Hu Y, Yan C, Berk B, Wang J. Sci. Rep., 2017, 7:15539.
[10] Herculano-Houzel S. Plos One, 2011, 6:e17514.
[11] Zhou Q, Liu C, Liu W, Zhang H, Zhang R, Liu J, Zhang J, Xu C, Liu L, Huang S, Chen L. Toxicol. Sci., 2015, 143:81.
[12] Ojha S, Javed H, Azimullah S, Abul Khair S B, Haque M E. Neurotox. Res., 2016, 29:275.
[13] Medeiros M S, Schumacher-Schuh A, Cardoso A M, Bochi G V, Baldissarelli J, Kegler A, Santana D, Chaves C M, Schetinger M R, Moresco R N, Rieder C R, Fighera M R. PLoS One, 2016, 11:e0146129.
[14] Giordano S, Darley-Usmar V, Zhang J. Redox Biol., 2014, 2:82.
[15] Tan Y, Liu R C, Zhang H T, Peltier R, Lam Y W, Zhu Q, Hu Y, Sun H Y. Sci. Rep., 2015, 5:16979.
[16] Choi Y B, Tenneti L, Le D A, Ortiz J, Bai G, Chen H S, Lipton S A. Nat. Neurosci., 2000, 3:15.
[17] Sen N, Hara M R, Ahmad A S, Cascio M B, Kamiya A, Ehmsen J T, Agrawal N, Hester L, Dore S, Snyder S H, Sawa A. Neuron, 2009, 63:81.
[18] Akhtar M W, Sunico C R, Nakamura T, Lipton S A. Int. J. Cell Biol., 2012, 2012:463756.
[19] Bashkatova V, Alam M, Vanin A, Schmidt W J. Exp. Neurol., 2004, 186:235.
[20] Uehara T, Nakamura T, Yao D, Shi Z Q, Gu Z, Ma Y, Masliah E, Nomura Y, Lipton S A. Nature, 2006, 441:513.
[21] Chen Z, Chen S J. Cell, 2017, 168:556.
[22] Lu C H, Lin Y F, Lin J J, Yu C S. PLoS One, 2012, 7:e39252.
[23] Hu Y, Wang G, Chen G Y, Fu X, Yao S Q. Electrophoresis, 2003, 24:1458.
[24] Lu H R, Li S H, Chen J, Xia J, Zhang J C, Huang Y, Liu X X, Wu H C, Zhao Y L, Chai Z F, Hu Y. Metallomics, 2015, 7:1508.
[25] Perl D P, Olanow C W. J. Neuropathol. Exp. Neurol., 2007, 66:675.
[26] Cersosimo M G, Koller W C. Neurotoxicology, 2006, 27:340.
[27] Dixon S J, Lemberg K M, Lamprecht M R, Skouta R, Zaitsev E M, Gleason C E, Patel D N, Bauer A J, Cantley A M, Yang W S, Morrison B, 3rd, Stockwell B R. Cell, 2012, 149:1060.
[28] Angeli J P F, Shah R, Pratt D A, Conrad M. Trends Pharmacol. Sci., 2017, 38:489.
[29] Massie A, Schallier A, Kim S W, Fernando R, Kobayashi S, Beck H, De Bundel D, Vermoesen K, Bannai S, Smolders I, Conrad M, Plesnila N, Sato H, Michotte Y. FASEB J., 2011, 25:1359.
[30] Gao M, Monian P, Quadri N, Ramasamy R, Jiang X. Mol. Cell, 2015, 59:298.
[31] Yang W S, Kim K J, Gaschler M M, Patel M, Shchepinov M S, Stockwell B R. Proc. Natl. Acad. Sci. U. S. A., 2016, 113:E4966.
[32] Doll S, Proneth B, Tyurina Y Y, Panzilius E, Kobayashi S, Ingold I, Irmler M, Beckers J, Aichler M, Walch A, Prokisch H, Trumbach D, Mao G, Qu F, Bayir H, Fullekrug J, Scheel C H, Wurst W, Schick J A, Kagan V E, Angeli J P, Conrad M. Nat. Chem. Biol., 2017, 13:91.
[33] Yang W S, Stockwell B R. Chem. Biol., 2008, 15:234.
[34] Hou W, Xie Y, Song X, Sun X, Lotze M T, Zeh H J, Kang R, Tang D. Autophagy, 2016, 12:1425.
[35] Mancias J D, Wang X, Gygi S P, Harper J W, Kimmelman A C. Nature, 2014, 509:105.
[36] Torii S, Shintoku R, Kubota C, Yaegashi M, Torii R, Sasaki M, Suzuki T, Mori M, Yoshimoto Y, Takeuchi T, Yamada K. Biochem. J., 2016, 473:769.
[37] Ayton S, Lei P. Biomed. Res. Int., 2014, 2014:581256.
[38] Belaidi A A, Bush A I. J. Neurochem., 2016, 139:179.
[39] Buijs M, Doan N T, van Rooden S, Versluis M J, van Lew B, Milles J, van der Grond J, van Buchem M A. Neurobiol. Aging, 2017, 53:20.
[40] Rhodes S L, Buchanan D D, Ahmed I, Taylor K D, Loriot M A, Sinsheimer J S, Bronstein J M, Elbaz A, Mellick G D, Rotter J I, Ritz B. Neurobiol. Dis., 2014, 62:172.
[41] Jiang H, Wang J, Rogers J, Xie J. Mol. Neurobiol., 2017, 54:3078.
[42] Ayton S, Lei P, Duce J A, Wong B X, Sedjahtera A, Adlard P A, Bush A I, Finkelstein D I. Ann. Neurol., 2013, 73:554.
[43] Hochstrasser H, Bauer P, Walter U, Behnke S, Spiegel J, Csoti I, Zeiler B, Bornemann A, Pahnke J, Becker G, Riess O, Berg D. Neurology, 2004, 63:1912.
[44] Hochstrasser H, Tomiuk J, Walter U, Behnke S, Spiegel J, Kruger R, Becker G, Riess O, Berg D. FASEB J., 2005, 19:1851.
[45] Kotzbauer P T, Truax A C, Trojanowski J Q, Lee V M. J. Neurosci., 2005, 25:689.
[46] Kubota A, Hida A, Ichikawa Y, Momose Y, Goto J, Igeta Y, Hashida H, Yoshida K, Ikeda S, Kanazawa I, Tsuji S. Mov. Disord., 2009, 24:441.
[47] Huang H, Chen J, Lu H R, Zhou M X, Chai Z F, Hu Y. Biometals, 2017, 30:623.
[48] Huang H, Chen J, Lu H R, Zhou M X, Chai Z F, Hu Y. Biometals, 2017, 30:975.
[49] Lan A P, Chen J, Zhao Y L, Chai Z F, Hu Y. Neuromol. Med., 2017, 19:1.
[50] Lu H R, Chen J, Huang H, Zhou M X, Zhu Q, Yao S Q, Chai Z F, Hu Y. Biometals, 2017, 30:599.
[51] Li X F, Zhang H T, Xie Y S, Hu Y, Sun H Y, Zhu Q. Org. Biomol. Chem., 2014, 12:2033.
[52] Peng Y, Wang C, Xu H H, Liu Y N, Zhou F. J. Inorg. Biochem., 2010, 104:365.
[53] He Q, Song N, Jia F, Xu H, Yu X, Xie J, Jiang H. Int. J. Biochem. Cell Biol., 2013, 45:1019.
[54] Febbraro F, Giorgi M, Caldarola S, Loreni F, Romero-Ramos M. Neuroreport, 2012, 23:576.
[55] Kaur D, Yantiri F, Rajagopalan S, Kumar J, Mo J Q, Boonplueang R, Viswanath V, Jacobs R, Yang L, Beal M F, DiMonte D, Volitaskis I, Ellerby L, Cherny R A, Bush A I, Andersen J K. Neuron, 2003, 37:899.
[56] Do Van B, Gouel F, Jonneaux A, Timmerman K, Gele P, Petrault M, Bastide M, Laloux C, Moreau C, Bordet R, Devos D, Devedjian J C. Neurobiol. Dis., 2016, 94:169.
[57] Devos D, Moreau C, Devedjian J C, Kluza J, Petrault M, Laloux C, Jonneaux A, Ryckewaert G, Garcon G, Rouaix N, Duhamel A, Jissendi P, Dujardin K, Auger F, Ravasi L, Hopes L, Grolez G, Firdaus W, Sablonniere B, Strubi-Vuillaume I, Zahr N, Destee A, Corvol J C, Poltl D, Leist M, Rose C, Defebvre L, Marchetti P, Cabantchik Z I, Bordet R. Antioxid. Redox Signal., 2014, 21:195.
[58] Lu H R, Zhang H T, Chen J, Zhang J C, Liu R C, Sun H Y, Zhao Y L, Chai Z F, Hu Y. Talanta, 2016, 146:477.
[59] Larner F, Sampson B, Rehkamper M, Weiss D J, Dainty J R, O'Riordan S, Panetta T, Bain P G. Metallomics, 2013, 5:125.
[60] Asthana A, Bollapalli M, Tangirala R, Bakthisaran R, Mohan Rao C. Free Radic. Biol. Med., 2014, 72:176.
[61] Huang H C, Hong L, Chang P, Zhang J, Lu S Y, Zheng B W, Jiang Z F. Neurotox. Res., 2015, 27:411.
[62] Zeeshan M, Murugadas A, Ghaskadbi S, Rajendran R B, Akbarsha M A. Comp. Biochem. Physiol. C Toxicol. Pharmacol., 2016, 185/186:1.
[63] Lan A P, Xiong X J, Chen J, Wang X, Chai Z F, Hu Y. Neurotox. Res., 2016, 30:499.
[64] Kobayashi H, Fukuhara K, Tada-Oikawa S, Yada Y, Hiraku Y, Murata M, Oikawa S. J. Neurochem., 2009, 108:397.
[65] Kumar V, Kalita J, Bora H K, Misra U K. Toxicol. Appl. Pharmacol., 2016, 293:37.
[66] Uriu-Adams J Y, Scherr R E, Lanoue L, Keen C L. BioFactors, 2010, 36:136.
[67] Valensin D, Dell'Acqua S, Kozlowski H, Casella L. J. Inorg. Biochem., 2016, 163:292.
[68] Mason R J, Paskins A R, Dalton C F, Smith D P. Biochemistry, 2016, 55:4737.
[69] Anandhan A, Rodriguez-Rocha H, Bohovych I, Griggs A M, Zavala-Flores L, Reyes-Reyes E M, Seravalli J, Stanciu L A, Lee J, Rochet J C, Khalimonchuk O, Franco R. Neurobiol. Dis., 2015, 81:76.
[70] Wang H, Wang M, Wang B, Li M, Chen H, Yu X, Zhao Y, Feng W, Chai Z. Metallomics, 2012, 4:289.
[71] Wang H, Wang M, Wang B, Li M, Chen H, Yu X, Yang K, Chai Z, Zhao Y, Feng W. Metallomics, 2012, 4:1113.
[72] You L H, Li F, Wang L, Zhao S E, Wang S M, Zhang L L, Zhang L H, Duan X L, Yu P, Chang Y Z. Neuroscience, 2015, 284:234.
[73] Walker T, Michaelides C, Ekonomou A, Geraki K, Parkes H G, Suessmilch M, Herlihy A H, Crum W R, So P W. Aging-US, 2016, 8:2488.
[74] Ortega R, Carmona A, Roudeau S, Perrin L, Ducic T, Carboni E, Bohic S, Cloetens P, Lingor P. Mol. Neurobiol., 2016, 53:1925.
[75] Colvin R A, Lai B, Holmes W R, Lee D. Metallomics, 2015, 7:1111.
[76] Surowka A D, Wrobel P, Adamek D, Radwanska E, Szczerbowska-Boruchowska M. Metallomics, 2015, 7:1522.
[77] Davies K M, Bohic S, Carmona A, Ortega R, Cottam V, Hare D J, Finberg J P, Reyes S, Halliday G M, Mercer J F, Double K L. Neurobiol. Aging, 2014, 35:858.
[78] Davies K M, Hare D J, Bohic S, James S A, Billings J L, Finkelstein D I, Doble P A, Double K L. Anal. Chem., 2015, 87:6639.
[79] Surowka A D, Topperwien M, Bernhardt M, Nicolas J D, Osterhoff M, Salditt T, Adamek D, Szczerbowska-Boruchowska M. Talanta, 2016, 161:368.
[80] Surowka A D, Wrobel P, Marzec M M, Adamek D, Szczerbowska-Boruchowska M. Spectroc. Acta Pt. B-Atom. Spectr., 2016, 123:47.
[81] Gao Y X, Peng X M, Zhang J C, Zhao J T, Li Y Y, Li Y F, Li B, Hu Y, Chai Z F. Metallomics, 2013, 5:913.
[82] Kumar A, Tamjar J, Waddell A D, Woodroof H I, Raimi O G, Shaw A M, Peggie M, Muqit M M, van Aalten D M. eLife, 2017, 6:e29985.
[83] Rodriguez J A, Ivanova M I, Sawaya M R, Cascio D, Reyes F E, Shi D, Sangwan S, Guenther E L, Johnson L M, Zhang M, Jiang L, Arbing M A, Nannenga B L, Hattne J, Whitelegge J, Brewster A S, Messerschmidt M, Boutet S, Sauter N K, Gonen T, Eisenberg D S. Nature, 2015, 525:486.
[84] Hahl H, Moller I, Kiesel I, Campioni S, Riek R, Verdes D, Seeger S. ACS Chem. Neurosci., 2015, 6:374.
[85] Araki K, Yagi N, Ikemoto Y, Yagi H, Choong C J, Hayakawa H, Beck G, Sumi H, Fujimura H, Moriwaki T, Nagai Y, Goto Y, Mochizuki H. Sci. Rep., 2015, 5:17625.
[1] Shuai Li, Na Zhu, Yangjian Cheng, Di Chen. Performance of Resistance to Sulfur Oxide and Regeneration over Copper-Based Small-Pore Zeolites Catalysts for the Selective Catalytic Reduction of NOx with NH3 [J]. Progress in Chemistry, 2023, 35(5): 771-779.
[2] Shiying Yang, Qianfeng Li, Sui Wu, Weiyin Zhang. Mechanisms and Applications of Zero-Valent Aluminum Modified by Iron-Based Materials [J]. Progress in Chemistry, 2022, 34(9): 2081-2093.
[3] Zonghan Xue, Nan Ma, Weigang Wang. Nitrated Mono-Aromatic Hydrocarbons in the Atmosphere [J]. Progress in Chemistry, 2022, 34(9): 2094-2107.
[4] Jin Zhou, Pengpeng Chen. Modification of 2D Nanomaterials and Their Applications in Environment Pollution Treatment [J]. Progress in Chemistry, 2022, 34(6): 1414-1430.
[5] Jinhui Zhang, Jinhua Zhang, Jiwei Liang, Kaili Gu, Wenjing Yao, Jinxiang Li. Progress in Zerovalent Iron Technology for Water Treatment of Metal(loid) (oxyan) Ions: A Golden Decade from 2011 to 2021 [J]. Progress in Chemistry, 2022, 34(5): 1218-1228.
[6] Meirong Li, Chenliu Tang, Weixian Zhang, Lan Ling. Performance and Mechanism of Aqueous Arsenic Removal with Nanoscale Zero-Valent Iron [J]. Progress in Chemistry, 2022, 34(4): 846-856.
[7] Jiali Zhong, Weigang Wang, Chao Peng, Nan Ma, Zhijun Wu, Maofa Ge. Atmospheric Aerosol Hygroscopicity and Their Influence on Environment [J]. Progress in Chemistry, 2022, 34(4): 801-814.
[8] Shuangyu Zhang, Yunxuan Hu, Cheng Li, Xinhua Xu. Effect of Microbial Iron Redox on Aqueous Arsenic and Antimony Removal [J]. Progress in Chemistry, 2022, 34(4): 870-883.
[9] Yan Xu, Chungang Yuan. Preparation, Stabilization and Applications of Nano-Zero-Valent Iron Composites in Water Treatment [J]. Progress in Chemistry, 2022, 34(3): 717-742.
[10] Tingting Zhang, Xingzhi Hong, Hui Gao, Ying Ren, Jianfeng Jia, Haishun Wu. Thermally Activated Delayed Fluorescence Materials Based on Copper Metal-Organic Complexes [J]. Progress in Chemistry, 2022, 34(2): 411-433.
[11] Yimin Sun, Houshen Li, Zhenyu Chen, Dong Wang, Zhanpeng Wang, Fei Xiao. The Application of MXene in Electrochemical Sensor [J]. Progress in Chemistry, 2022, 34(2): 259-271.
[12] Chi Guo, Wang Zhang, Ji Tu, Shengrui Chen, Jiyuan Liang, Xiangke Guo. Construction of 3D Copper-Based Collector and Its Application in Lithium Metal Batteries [J]. Progress in Chemistry, 2022, 34(2): 370-383.
[13] Kang Chun, Lin Yanxin, Jing Yuanju, Wang Xinbo. Preparation and Environmental Applications of 2D Nanomaterial MXenes [J]. Progress in Chemistry, 2022, 34(10): 2239-2253.
[14] Haodong Ji, Juanjuan Qi, Maosheng Zheng, Chenyuan Dang, Long Chen, Taobo Huang, Wen Liu. Application of Nanotechnology for Virus Inactivation in Water:Implications for Transmission-Blocking of the Novel Coronavirus SARS-CoV-2 [J]. Progress in Chemistry, 2022, 34(1): 207-226.
[15] Chenliu Tang, Yunjie Zou, Mingkai Xu, Lan Ling. Photocatalytic Reduction of Carbon Dioxide with Iron Complexes [J]. Progress in Chemistry, 2022, 34(1): 142-154.