中文
Announcement
More
Progress in Chemistry 2019, Vol. 31 Issue (2/3): 381-393 DOI: 10.7536/PC180604 Previous Articles   Next Articles

Preparation of Ferrite Magnetic Nano-Catalysts and Their Applications in the Field of Resources and Energy

Xiangyang Zhu1,2, Shan Ni1,2, Qinling Bi3,**(), Liangrong Yang1,**(), Huifang Xing1,2, Huizhou Liu1,2   

  1. 1. CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
    2. University of Chinese Academy of Sciences, Beijing 100049, China
    3. Petro China Company Limited. Petrochemical Research Institute, Petro China, Beijing 102206, China
  • Received: Online: Published:
  • Contact: Qinling Bi, Liangrong Yang
  • About author:
    ** E-mail: (Liangrong Yang);
  • Supported by:
    work was supported by China Petroleum Enterprise Cooperation Project(PRIKY17094); National Natural Science Foundation of China(21676273); National Natural Science Foundation of China(U1507203); Chinese High Technology Research and Development Program(2015CB251402); Beijing Natural Science Fundation of China(2194086)
Richhtml ( 9 ) PDF ( 655 ) Cited
Export

EndNote

Ris

BibTeX

With the development of exploitation technique, oil resources development and utilization have increased. However, the existing oil resources are complex in composition and high in viscosity. The use of conventional catalysts for upgrading has problems of low utilization efficiency, difficulty in recovery, etc. Biomass has emerged as a potential alternative to the dwindling fossil fuel reserves. Catalytic conversion of biomass has become one of the main routes for the transformation of biomass into a variety of commodity chemicals or liquid fuels. However, the common homogeneous and heterogeneous catalysts used in biomass catalytic conversion also have problems such as difficulty in recycling and big consumption, which limits their applications. Magnetic nano-catalysts, as new catalysts, not only have high catalytic activity, but also can be separated under the external magnetic field, achieving their recovery and reuse, making industry production serialization, reducing the cost of chemical production, and improving the production. Here we review the preparation methods of ferrite magnetic nano-catalysts. We also present their recent advances in the fields of catalytic desulfurization, catalytic conversion of biomass to chemicals, production of biodiesel, coal liquefaction, and analyze the problems to be solved for the specific applications in the field of resources and energy. Finally, the prospects on the application of ferrite magnetic nanoparticles are outlined.

Fig. 1 Synthesis of Fe3O4-SiO2-CTS-PEI particles[27]
Fig. 2 The synthesis route of spherical magnetic γ-Al2O3 composites[28]
Fig. 3 Preparation of the m-PGMA-EDA microspheres[32]
Fig. 4 Schematic illustration of synthetic route of the Fe3O4@Au nanoparticles[57]
Fig. 5 Magnetically recoverable copper nanocatalysts[65]
Fig. 6 Magnetically recoverable molybdenum nano-catalysts[68]
Fig. 7 Possible reaction pathways in HDS of DBT[70]
Fig. 8 Possible reaction pathways in HDS of 4,6-DMDBT[70]
Fig. 9 The oxidation of HMF into DFF[81]
Table 1 Production of biodiesel over magnetic catalysts[79]
[1]
张利波(Zhang L B), 王璐(Wang L), 曲雯雯(Qu W W), 徐盛明(Xu S M), 张家麟(Zhang J L) . 材料导报, 2018,(05):772.
[2]
Wang H, Fu P, Li J, Huang Y, Zhao Y, Jiang L, Fang X, Yang T, Huang Z, Huang C . Engineering, 2018,4(3):406.
[3]
Wang D, Astruc D . Chemical Reviews, 2014,114(14):6949. https://www.ncbi.nlm.nih.gov/pubmed/24892491

doi: 10.1021/cr500134h pmid: 24892491
[4]
Boon Y H, Mohamad Zain N N, Mohamad S, Osman H, Raoov M . Food Chemistry, 2019,278:322. https://www.ncbi.nlm.nih.gov/pubmed/30583379

doi: 10.1016/j.foodchem.2018.10.145 pmid: 30583379
[5]
Rathi A K, Gawande M B, Pechousek J, Tucek J, Aparicio C, Petr M, Tomanec O, Krikavova R, Travnicek Z, Varma R S, Zboril R . Green Chemistry, 2016,18(8):2363.
[6]
Zhu Y, Stubbs L P, Ho F, Liu R, Ship C P, Maguire J A, Hosmane N S . ChemCatChem, 2010,2(4):365.
[7]
Polshettiwar V, Luque R, Fihri A, Zhu H, Bouhrara M, Basset J . Chemical Reviews, 2011,111(5):3036. https://www.ncbi.nlm.nih.gov/pubmed/21401074

doi: 10.1021/cr100230z pmid: 21401074
[8]
Baig R B N, Varma R S . Chemical Communications, 2013,49(8):752. https://www.ncbi.nlm.nih.gov/pubmed/23212208

doi: 10.1039/c2cc35663e pmid: 23212208
[9]
Sun Z, Zhou X, Luo W, Yue Q, Zhang Y, Cheng X, Li W, Kong B, Deng Y, Zhao D . Nano Today, 2016,11(4):464.
[10]
Sankaranarayanapillai S, Volker S, R. T W . Angewandte Chemie International Edition, 2010,49(20):3428. https://www.ncbi.nlm.nih.gov/pubmed/20419718

doi: 10.1002/anie.200905684 pmid: 20419718
[11]
Yin M, O’Brien S . Journal of the American Chemical Society, 2003,125(34):10180. https://www.ncbi.nlm.nih.gov/pubmed/12926934

doi: 10.1021/ja0362656 pmid: 12926934
[12]
Bin N H, Chan S I, Taeghwan H . Advanced Materials, 2009,21(21):2133.
[13]
Jana N R, Chen Y, Peng X . Chemistry of Materials, 2004,16(20):3931.
[14]
Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L, Muller R N . Chemical Reviews, 2008,108(6):2064. https://www.ncbi.nlm.nih.gov/pubmed/18543879

doi: 10.1021/cr068445e pmid: 18543879
[15]
Lim C W, Lee I S . Nano Today, 2010,5(5):412.
[16]
Griffiths C H, Horo M P O, Smith T W . Journal of Applied Physics, 1979,50(11):7108.
[17]
Zhang Z J, Wang Z L, Chakoumakos B C, Yin J S . Journal of the American Chemical Society, 1998,120(8):1800.
[18]
Chandel M, Ghosh B K, Moitra D, Patra M K, Vadera S R, Ghosh N N . 2018,18:2481.
[19]
Quandt N, Syrowatka F, Roth R, Ebbinghaus S G . Thin Solid Films, 2017,636:573.
[20]
Patnaik S, Das K K, Mohanty A, Parida K . Catalysis Today, 2018,315:52.
[21]
Robinson I, Tung L D, Maenosono S, Walti C, Thanh N T K . Nanoscale, 2010,2(12):2624. https://www.ncbi.nlm.nih.gov/pubmed/20967339

doi: 10.1039/c0nr00621a pmid: 20967339
[22]
Wei S, Wang Q, Zhu J, Sun L, Lin H, Guo Z . Nanoscale, 2011,3(11):4474. https://www.ncbi.nlm.nih.gov/pubmed/21984390

doi: 10.1039/c1nr11000d pmid: 21984390
[23]
Pershina A G, Sazonov A E, Filimonov V D . Russian Chemical Reviews, 2014,83(4):299.
[24]
Malik V, Suthar K J, Mancini D C, Ilavsky J . Journal of Magnetism and Magnetic Materials, 2014,354:70.
[25]
Wierucka M, Biziuk M . TrAC Trends in Analytical Chemistry, 2014,59:50.
[26]
Martin G A, De Mongolfier P, Imelik B . Surface Science, 1973,36(2):675.
[27]
Sun X, Yang L, Li Q, Liu Z, Dong T, Liu H . Chemical Engineering Journal, 2015,262:101.
[28]
Lang Y, Wang Q, Xing J, Zhang B, Liu H . AIChE Journal, 2008,54(9):2303.
[29]
Peng Y, Dong M, Meng X, Zong B, Zhang J . AIChE Journal, 2009,55(3):717.
[30]
Liu Y, Li L, Liu S, Xie C, Yu S . RSC Advances, 2016,6(84):81310.
[31]
Zhang Y, Zhang M, Yang J, Ding L, Zheng J, Xu J, Xiong S . Nanoscale, 2016,8(35):15978. https://www.ncbi.nlm.nih.gov/pubmed/27539541

doi: 10.1039/c6nr05078f pmid: 27539541
[32]
Dong T, Yang L, Pan F, Xing H, Wang L, Yu J, Qu H, Rong M, Liu H . Journal of Magnetism and Magnetic Materials, 2017,427:289.
[33]
Altıntas E B, Türkmen D, Karakoç V, Denizli A . Colloids and Surfaces B: Biointerfaces, 2011,85(2):235. https://www.ncbi.nlm.nih.gov/pubmed/21435847

doi: 10.1016/j.colsurfb.2011.02.034 pmid: 21435847
[34]
Köse K, Denizli A . Artificial Cells, Nanomedicine, and Biotechnology, 2013,41(1):13. https://www.ncbi.nlm.nih.gov/pubmed/23110388

doi: 10.3109/10731199.2012.696067 pmid: 23110388
[35]
Erol K, Uzunoglu A, Köse K, Sarıca B, Avcı E, Köse D A . Journal of Chromatography B, 2018, 1081-1082:1. https://www.ncbi.nlm.nih.gov/pubmed/29494983

doi: 10.1016/j.jchromb.2018.02.017 pmid: 29494983
[36]
Polshettiwar V, Varma R S . Tetrahedron, 2010,66(5):1091.
[37]
Zheng Y, Stevens P D, Gao Y . The Journal of Organic Chemistry, 2006,71(2):537. https://www.ncbi.nlm.nih.gov/pubmed/16408961

doi: 10.1021/jo051861z pmid: 16408961
[38]
Tucker S A K, Garrell R L . Chemistry-A European Journal, 2010,16(42):12718. https://www.ncbi.nlm.nih.gov/pubmed/20853280

doi: 10.1002/chem.200903527 pmid: 20853280
[39]
Baghayeri M, Amiri A, Maleki B, Alizadeh Z, Reiser O . Sensors and Actuators B: Chemical, 2018,273:1442.
[40]
Kawamura M, Sato K . Chemical Communications, 2007,(32):3404. https://www.ncbi.nlm.nih.gov/pubmed/18019512

doi: 10.1039/b705640k pmid: 18019512
[41]
Peng F, Wang Q, Shi R, Wang Z, You X, Liu Y, Wang F, Gao J, Mao C . Scientific Reports, 2016,6(1).
[42]
Rossi L M, Costa N J S, Silva F P, Wojcieszak R . Green Chemistry, 2014,16(6):2906. b28483b0-be81-40de-81a9-bb6c79f44d54http://dx.doi.org/10.1039/c4gc00164h

doi: 10.1039/c4gc00164h
[43]
Tristão J C, Oliveira A A S, Ardisson J D, Dias A, Lago R M . Materials Research Bulletin, 2011,46(5):748. 97990dda-7c10-4467-95fd-69655bc28656http://dx.doi.org/10.1016/j.materresbull.2011.01.008

doi: 10.1016/j.materresbull.2011.01.008
[44]
Geng J, Jefferson D A, Johnson B F G . Chemical Communications, 2004,(21):2442. https://www.ncbi.nlm.nih.gov/pubmed/15514806

doi: 10.1039/b406227b pmid: 15514806
[45]
Hirao T . Chemical Reviews, 1997,97(8):2707. https://www.ncbi.nlm.nih.gov/pubmed/11851478

doi: 10.1021/cr960014g pmid: 11851478
[46]
Park J, Cheon J . Journal of the American Chemical Society, 2001,123(24):5743. https://www.ncbi.nlm.nih.gov/pubmed/11403607

doi: 10.1021/ja0156340 pmid: 11403607
[47]
Álvarez P M, Jaramillo J, López-Piñero F, Plucinski P K . Applied Catalysis B: Environmental, 2010,100(1):338. https://linkinghub.elsevier.com/retrieve/pii/S0926337310003565

doi: 10.1016/j.apcatb.2010.08.010
[48]
Ye M, Zorba S, He L, Hu Y, Maxwell R T, Farah C, Zhang Q, Yin Y . Journal of Materials Chemistry, 2010,20(37):7965. http://xlink.rsc.org/?DOI=c0jm02001j

doi: 10.1039/c0jm02001j
[49]
He Q, Zhang Z, Xiong J, Xiong Y, Xiao H . Optical Materials, 2008,31(2):380. https://www.ncbi.nlm.nih.gov/pubmed/26866939

doi: 10.1002/jbmr.2705 pmid: 26866939
[50]
Shiri L, Ghorbani-Choghamarani A, Kazemi M . Australian Journal of Chemistry, 2017,70(1):9. http://www.publish.csiro.au/?paper=CH16318

doi: 10.1071/CH16318
[51]
Chemler S R . Beilstein Journal of Organic Chemistry, 2015,11:2252. https://www.ncbi.nlm.nih.gov/pubmed/26664648

doi: 10.3762/bjoc.11.244 pmid: 26664648
[52]
黄寅斌(Huang Y B), 杨良嵘(Yang L B), 邢慧芳(Xing H F), 李鹏飞(Li P F, 李文松(Li W S), 刘会洲(Liu H Z), . 化学通报, 2011,(12):1084.
[53]
Ghalandari A, Taghizadeh M, Rahmani M . Chemical Engineering & Technology, 2019,42(1):89.
[54]
Huang R, Tang T . Nano, 2018,13(11):1850128. https://www.worldscientific.com/doi/abs/10.1142/S179329201850128X

doi: 10.1142/S179329201850128X
[55]
Cheng T, Zhang D, Li H, Liu G . Green Chemistry, 2014,16(7):3401. 60524025-ff94-4267-b987-684c7e6612b8http://dx.doi.org/10.1039/c4gc00458b

doi: 10.1039/c4gc00458b
[56]
Ban Z, Barnakov Y A, Li F, Golub V O, O’Connor C J . Journal of Materials Chemistry, 2005,15(43):4660. http://xlink.rsc.org/?DOI=b504304b

doi: 10.1039/b504304b
[57]
Qu H, Yang L, Yu J, Dong T, Rong M, Zhang J, Xing H, Wang L, Pan F, Liu H . RSC Advances, 2017,7(57):35704. https://www.ncbi.nlm.nih.gov/pubmed/29225796

doi: 10.1039/C7RA05041K pmid: 29225796
[58]
Tamoradi T, Ghorbani-Choghamarani A, Ghadermazi M . Polyhedron, 2019,157:374. https://linkinghub.elsevier.com/retrieve/pii/S0277538718306491

doi: 10.1016/j.poly.2018.10.013
[59]
Mori K, Yoshioka N, Kondo Y, Takeuchi T, Yamashita H . Green Chemistry, 2009,11(9):1337. http://xlink.rsc.org/?DOI=b905331j

doi: 10.1039/b905331j
[60]
Ji Z, Shen X, Zhu G, Zhou H, Yuan A . Journal of Materials Chemistry, 2012,22(8):3471. 052bb80a-7453-4bbc-912e-e248905763f0http://dx.doi.org/10.1039/c2jm14680k

doi: 10.1039/c2jm14680k
[61]
Rashid M H, Raula M, Mandal T K . Journal of Materials Chemistry, 2011,21(13):4904. a1401d23-6f66-469d-b4b1-54e7179f06e2http://dx.doi.org/10.1039/c0jm03047c

doi: 10.1039/c0jm03047c
[62]
Rezaeifard A, Jafarpour M, Farshid P, Naeimi A . European Journal of Inorganic Chemistry, 2012,2012(33):5515. http://doi.wiley.com/10.1002/ejic.201200753

doi: 10.1002/ejic.201200753
[63]
Shin K S, Choi J, Park C S, Jang H J, Kim K . Catalysis Letters, 2009,133(1):1. http://link.springer.com/10.1007/s10562-009-0124-7

doi: 10.1007/s10562-009-0124-7
[64]
Zhang X, Jiang W, Gong X, Zhang Z . Journal of Alloys and Compounds, 2010,508(2):400. https://linkinghub.elsevier.com/retrieve/pii/S0925838810020724

doi: 10.1016/j.jallcom.2010.08.070
[65]
Ghorbani C A, Darvishnejad Z, Norouzi M . Applied Organometallic Chemistry, 2015,29(3):170. http://doi.wiley.com/10.1002/aoc.3266

doi: 10.1002/aoc.3266
[66]
Shi F, Tse M K, Pohl M, Radnik J, Brückner A, Zhang S, Beller M . Journal of Molecular Catalysis A: Chemical, 2008,292(1):28. https://linkinghub.elsevier.com/retrieve/pii/S1381116908002823

doi: 10.1016/j.molcata.2008.06.008
[67]
Rafiee E, Eavani S . Green Chemistry, 2011,13(8):2116. https://www.ncbi.nlm.nih.gov/pubmed/25024006

doi: 10.1158/1535-7163.MCT-13-0952 pmid: 25024006
[68]
Keypour H, Balali M, Haghdoost M M, Bagherzadeh M . RSC Advances, 2015,5(66):53349. https://www.ncbi.nlm.nih.gov/pubmed/27019703

doi: 10.1039/c5ra08857g pmid: 27019703
[69]
Sharifvaghefi S, Zheng Y . ChemCatChem, 2015,7(20):3397. http://doi.wiley.com/10.1002/cctc.201500517

doi: 10.1002/cctc.201500517
[70]
Sharifvaghefi S, Zheng Y . ChemistrySelect, 2017,2(17):4678. http://doi.wiley.com/10.1002/slct.201700851

doi: 10.1002/slct.201700851
[71]
Alizadeh A, Fakhari M, Khodeai M M, Abdi G, Amirian J . RSC Advances, 2017,7(56):34972. http://xlink.rsc.org/?DOI=C7RA04957A

doi: 10.1039/C7RA04957A
[72]
Liu R, Dou S, Yu M, Wang R . Journal of Cleaner Production, 2017,168:1048. https://linkinghub.elsevier.com/retrieve/pii/S0959652617320875

doi: 10.1016/j.jclepro.2017.09.097
[73]
Jiang C, Wang J, Wang S, Guan H Y, Wang X, Huo M . Applied Catalysis B: Environmental, 2011,106(3):343. https://linkinghub.elsevier.com/retrieve/pii/S0926337311002578

doi: 10.1016/j.apcatb.2011.05.038
[74]
Zhang J, Zhu W, Li H, Jiang W, Jiang Y, Huang W, Yan Y . Green Chemistry, 2009,11(11):1801. http://xlink.rsc.org/?DOI=b914130h

doi: 10.1039/b914130h
[75]
Rafiee E, Rahpeyma N . Chinese Journal of Catalysis, 2015,36(8):1342. https://linkinghub.elsevier.com/retrieve/pii/S1872206715608622

doi: 10.1016/S1872-2067(15)60862-2
[76]
Wiredu B, Amarasekara A S . Catalysis Communications, 2014,48:41. 13f06f83-262f-4713-a692-e03c2da41295http://dx.doi.org/10.1016/j.catcom.2014.01.021

doi: 10.1016/j.catcom.2014.01.021
[77]
Elsayed I, Mashaly M, Eltaweel F, Jackson M A, Hassan E B . Fuel, 2018,221:407. https://linkinghub.elsevier.com/retrieve/pii/S0016236118303181

doi: 10.1016/j.fuel.2018.02.135
[78]
Dutta S, De S, Saha B . Biomass and Bioenergy, 2013,55:355. https://linkinghub.elsevier.com/retrieve/pii/S0961953413000573

doi: 10.1016/j.biombioe.2013.02.008
[79]
Shen S, Cai B, Wang C, Li H, Dai G, Qin H . Applied Catalysis A: General, 2014,473:70. https://linkinghub.elsevier.com/retrieve/pii/S0926860X13007898

doi: 10.1016/j.apcata.2013.12.037
[80]
Martínez J J, Nope E, Rojas H, Cubillos J, Sathicq Á G, Romanelli G P . Catalysis Letters, 2014,144(7):1322. 766ef3b6-2094-4fd5-90dd-840ca05c8cf3http://dx.doi.org/10.1007/s10562-014-1267-8

doi: 10.1007/s10562-014-1267-8
[81]
Liao L, Liu Y, Li Z, Zhuang J, Zhou Y, Chen S . RSC Advances, 2016,6(97):94976. http://xlink.rsc.org/?DOI=C6RA17932K

doi: 10.1039/C6RA17932K
[82]
Karimi B, Mirzaei H M, Farhangi E . ChemCatChem, 2014,6(3):758. 9f686250-e2e8-4034-abda-29e2e8997f91http://onlinelibrary.wiley.com/doi/10.1002/cctc.201301081/abstract

doi: 10.1002/cctc.201301081
[83]
Zhang P, Han Q, Fan M, Jiang P . Applied Surface Science, 2014,317:1125. 36b1b7cb-c98f-4aa8-a403-ea66b2b63149http://dx.doi.org/10.1016/j.apsusc.2014.09.043

doi: 10.1016/j.apsusc.2014.09.043
[84]
Liu C, Lv P, Yuan Z, Yan F, Luo W . Renewable Energy, 2010,35(7):1531. 08180106-7d71-49d2-8ed7-36c6a3c78493http://www.sciencedirect.com/science/article/pii/S0960148109004352

doi: 10.1016/j.renene.2009.10.009
[85]
Liu K, Wang R, Yu M . Renewable Energy, 2018,127:531. https://linkinghub.elsevier.com/retrieve/pii/S0960148118305172

doi: 10.1016/j.renene.2018.04.092
[86]
Wang Y, Fang Z, Yang X, Yang Y, Luo J, Xu K, Bao G . Chemical Engineering Journal, 2018,348:929. https://linkinghub.elsevier.com/retrieve/pii/S1385894718308283

doi: 10.1016/j.cej.2018.05.039
[87]
Xie W, Han Y, Wang H . Renewable Energy, 2018,125:675. https://linkinghub.elsevier.com/retrieve/pii/S0960148118303057

doi: 10.1016/j.renene.2018.03.010
[88]
Wu H, Liu Y, Zhang J, Li G . Bioresource Technolo-gy, 2014,174:182
[89]
Hu S, Guan Y, Wang Y, Han H . Applied Energy, 2011,88(8):2685. b0bddd5c-f585-4d44-a0f3-e9fd592cb6edhttp://www.sciencedirect.com/science/article/pii/S0306261911001115

doi: 10.1016/j.apenergy.2011.02.012
[90]
Lin L, Vittayapadung S, Li X, Jiang W, Shen A X . Environmental Progress & Sustainable Energy, 2012,32(4):1255.
[91]
Xue B, Luo J, Zhang F, Fang Z . Energy, 2014,68:584. e4c363e2-4783-4cb1-a2c9-dbb5df5f37f4http://dx.doi.org/10.1016/j.energy.2014.02.082

doi: 10.1016/j.energy.2014.02.082
[92]
Guo P, Huang F, Huang Q, Zheng C . Journal of the American Oil Chemists’ Society, 2012,89(3):497. http://doi.wiley.com/10.1007/s11746-011-1924-7

doi: 10.1007/s11746-011-1924-7
[93]
Dai Y, Wang Y, Chen C . Catalysis Communications, 2018,106:20. https://linkinghub.elsevier.com/retrieve/pii/S1566736717304740

doi: 10.1016/j.catcom.2017.12.002
[94]
Xie W, Huang M . Energy Conversion and Management, 2018,159:42. https://linkinghub.elsevier.com/retrieve/pii/S0196890418300219

doi: 10.1016/j.enconman.2018.01.021
[95]
Xie W, Han Y, Tai S . Fuel, 2017,210:83. https://linkinghub.elsevier.com/retrieve/pii/S0016236117310396

doi: 10.1016/j.fuel.2017.08.054
[96]
Salimi Z, Hosseini S A . Fuel, 2019,239:1204. https://linkinghub.elsevier.com/retrieve/pii/S0016236118320210

doi: 10.1016/j.fuel.2018.11.125
[97]
Mao X, Gong L, Xie L, Qian H, Wang X, Zeng H . Chemical Engineering Journal, 2019,358:869. https://linkinghub.elsevier.com/retrieve/pii/S1385894718320382

doi: 10.1016/j.cej.2018.10.089
[98]
Zhang H, Li H, Pan H, Liu X, Yang K, Huang S, Yang S . Energy Conversion and Management, 2017,138:45. https://linkinghub.elsevier.com/retrieve/pii/S0196890417300766

doi: 10.1016/j.enconman.2017.01.060
[99]
Trautmann M, Lang S, Traa Y . Fuel, 2015,151:102. https://linkinghub.elsevier.com/retrieve/pii/S0016236115000113

doi: 10.1016/j.fuel.2015.01.006
[1] Yang Guodong, Yuan Gaoqian, Zhang Jingzhe, Wu Jinbo, Li Faliang, Zhang Haijun. Porous Electromagnetic Wave Absorbing Materials [J]. Progress in Chemistry, 2023, 35(3): 445-457.
[2] Xiaowei Li, Lei Zhang, Qixin Xing, Jinyu Zan, Jin Zhou, Shuping Zhuo. Construction of Magnetic NiFe2O4-Based Composite Materials and Their Applications in Photocatalysis [J]. Progress in Chemistry, 2022, 34(4): 950-962.
[3] Zhen Zhang, Shuang Zhao, Guobing Chen, Kunfeng Li, Zhifang Fei, Zichun Yang. Preparation and Applications of Silicon Carbide Monolithic Aerogels [J]. Progress in Chemistry, 2021, 33(9): 1511-1524.
[4] Wei Li, Ziyu Yang, Yanglong Hou, Song Gao. Controllable Preparation and Magnetism Control of Two-Dimensional Magnetic Nanomaterials [J]. Progress in Chemistry, 2020, 32(10): 1437-1451.
[5] Yue Yang, Jueyu Wang, Min Zhao, Daizong Cui. Virus-Templated Synthesis of Metal Nanomaterials and Their Application [J]. Progress in Chemistry, 2019, 31(7): 1007-1019.
[6] Lei Chen, Wen Zhao, Gangji Yi, Jianjun Zhou, Aihua Yua. Single-Ion Magnets Based on 3d Transition Metal [J]. Progress in Chemistry, 2019, 31(2/3): 337-350.
[7] Liangrong Yang, Huifang Xing, Hongnan Qu, Jiemiao Yu, Huizhou Liu. External Field Enhanced Environmental Responsive Solid Extraction Technology [J]. Progress in Chemistry, 2019, 31(11): 1615-1622.
[8] Shanye Yang, Xiangxue Wang, Zhongshan Chen, Qian Li, Benben Wei, Xiangke Wang. Synthesis of Fe3O4-Based Nanomaterials and Their Application in the Removal of Radionuclides and Heavy Metal Ions [J]. Progress in Chemistry, 2018, 30(2/3): 225-242.
[9] Hongmei Bi, Xiaojun Han. Design and Fabrication of Magnetically Responsive Drug Delivery Carriers [J]. Progress in Chemistry, 2018, 30(12): 1920-1929.
[10] Guohua Xu, Conggang Li, Maili Liu. NMR Study of Protein Structure and Function in Cell-Like Environment [J]. Progress in Chemistry, 2017, 29(1): 75-82.
[11] Ming Weina, Wang Xiaoyan, Ming Yongfei, Li Jinhua, Chen Lingxin. Preparation and Applications of Core-Shell Molecularly Imprinted Polymers [J]. Progress in Chemistry, 2016, 28(4): 552-563.
[12] Wang Ruiying, Zhang Chaoyan, Wang Shuping, Zhou Youya. Synthesis and Application of Magnetic Metal-Organic Frameworks [J]. Progress in Chemistry, 2015, 27(7): 945-952.
[13] Liu Tianhui, Chang Gang, Cao Ruijun, Meng Lingjie. Applications of Superparamagnetic Fe3O4 Nanoparticles in Magnetic Resonance Imaging [J]. Progress in Chemistry, 2015, 27(5): 601-613.
[14] Han Qiang, Wang Zonghua, Zhang Xiaoqiong, Ding Mingyu. Graphene and Its Composites in Sample Preparation [J]. Progress in Chemistry, 2014, 26(05): 820-833.
[15] Tan Lisha, Sun Mingyang, Hu Yunjun, Cheng Lihua, Xu Xinhua. Heavy Metal Removal from Aqueous Solution by Functional Magnetic Fe3O4 Nanoparticles [J]. Progress in Chemistry, 2013, 25(12): 2147-2158.