中文
Announcement
More
Progress in Chemistry 2019, Vol. 31 Issue (2/3): 394-412 DOI: 10.7536/PC180505 Previous Articles   Next Articles

Layered Double Hydroxides(LDHs): Synthesis & Applications

Saba Jamil1, Afaaf Rahat Alvi1, Shanza Rauf Khan1, Muhammad Ramzan Saeed Ashraf Janjua2,*()   

  1. 1. Department of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan
    2. Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
  • Received: Online: Published:
  • Contact: Muhammad Ramzan Saeed Ashraf Janjua
  • About author:
Richhtml ( 179 ) PDF ( 4358 ) Cited
Export

EndNote

Ris

BibTeX

Layered double hydroxides, a class of anionic clays possessing sandwich like structure in which negative anions are sandwiched into positively charged metal layers in a repeating manner, have been studied extensively. Layered double hydroxides could be fabricated with combination of different divalent(Cd2+, Mn2+, Fe2+, Pb2+) and trivalent(Al3+, Cr3+, Fe3+) metals and layered arrangement imparts unique properties such as adsorption properties and catalytic properties in these compounds. Exciting feature of these compounds is the memory effect. There are a number of methods to synthesize these layered compounds, such as co-precipitation, hydrothermal, sol-gel, urea hydrolysis, etc. The synthesized LDHs can be characterized morphologically and compositionally i.e. scanning electron microscopy, transmission electron microscopy, powder X-Ray diffraction, Mossbauer spectroscopy, thermogravimetric analysis, XPS, etc. The wonderful feature of layered double hydroxides is the pliancy of interlayer space enabling them to accommodate various anionic species, and high surface area making them efficient in numerous applications such as adsorbents, anion exchange, catalysts, and biological compatible.

[1]
Dong X, Jing Q, Shi Y, Yang Z, Pan S, Poeppelmeier K R, Young J, Rondinelli J M . J. Am. Chem. Soc., 2015,137:9417. https://www.ncbi.nlm.nih.gov/pubmed/26147880

doi: 10.1021/jacs.5b05406 pmid: 26147880
[2]
Vaccari A . Catal. Today, 1998,41:53.
[3]
Carretero M, Gomes C, Tateo F . Develop. Clay Sci., 2006,1:717.
[4]
Wu H, Pan S, Poeppelmeier K R, Li H, Jia D, Chen Z, Fan X, Yang Y, Rondinelli J M, Luo H . J. Am. Chem. Soc., 2011,133:7786. https://www.ncbi.nlm.nih.gov/pubmed/21534555

doi: 10.1021/ja111083x pmid: 21534555
[5]
Matike D, Ekosse G, Ngole V . Intl. J. Phys. Sci., 2011,6:7557.
[6]
Shi G, Wang Y, Zhang F, Zhang B, Yang Z, Hou X, Pan S, Poeppelmeier K R . J. Am. Chem. Soc., 2017,139:10645. https://www.ncbi.nlm.nih.gov/pubmed/28726399

doi: 10.1021/jacs.7b05943 pmid: 28726399
[7]
Wu H, Yu H, Yang Z, Hou X, Su X, Pan S, Poeppelmeier K R, Rondinelli J M . J. Am. Chem. Soc., 2013,135:4215. https://www.ncbi.nlm.nih.gov/pubmed/23448539

doi: 10.1021/ja400500m pmid: 23448539
[8]
Wang Y, Zhang B, Yang Z, Pan S . Angew. Chem., 2018,130:2172. https://www.ncbi.nlm.nih.gov/pubmed/18220399

doi: 10.1021/ja710665q pmid: 18220399
[9]
López-Galindo A, Viseras C, Cerezo P . Appl. Clay Sci., 2007,36:51.
[10]
Tateo F, Summa V, Bonelli C, Bentivenga G . Appl. Clay Sci., 2001,20:97.
[11]
Wang X, Wang Y, Zhang B, Zhang F, Yang Z, Pan S . Angew. Chem., 2017,129:14307.
[12]
Zhang B, Shi G, Yang Z, Zhang F, Pan S . Angew. Chem. Int. Ed., 2017,56:3916. https://www.ncbi.nlm.nih.gov/pubmed/28251767

doi: 10.1002/anie.201700540 pmid: 28251767
[13]
Rajamathi M, Thomas G S, Kamath P V . J. Chem. Sci., 2001,113:671.
[14]
Costa F R, Leuteritz A, Wagenknecht U, Jehnichen D, Haeussler L, Heinrich G . Appl. Clay Sci., 2008,38:153.
[15]
Yu H, Wu H, Pan S, Yang Z, Su X, Zhang F . J. Mater. Chem., 2012,22:9665.
[16]
Del Hoyo C . Appl. Clay Sci., 2007,36:103.
[17]
Nalawade P, Aware B, Kadam V, Hirlekar R . Amsterdam:Elsevier, 2009,64.
[18]
Li S, Bai H, Wang J, Jing X, Liu Q, Zhang M, Chen R, Liu L, JiÅ C . Chem. Eng. J., 2012,193:372.
[19]
Mishra G, Dash B, Pandey S . Appl. Clay Sci., 2018,153:172.
[20]
Hashim N, Sharif S N, Hussein M Z, Isa I M, Kamari A, Mohamed A, Ali N M, Bakar S A, Mamat M . Mater. Res. Innov., 2017,21:129.
[21]
Trolard F, Bourrié G . London: InTech., 2012,60.
[22]
De Roy A, Forano C, Besse J . United States: Nova Science, 2001,1.
[23]
De Roy A . Mol. Crys. Liq. Crys., 1998,311:173.
[24]
Antonyraj C, Koilraj P, Srinivasan K . United States: Nova Science, 2012,1.
[25]
Leroux F, Adachi-Pagano M, Intissar M, Chauvière S, Forano C, Besse J P . United States: Nova Science, 2001,1.
[26]
O’Leary S, O’Hare D, Seeley G . Chem. Commun., 2002: 1506.
[27]
Wang Q O’Hare D . Chem. Rev., 2012,112:4124. https://www.ncbi.nlm.nih.gov/pubmed/22452296

doi: 10.1021/cr200434v pmid: 22452296
[28]
Hibino T, Kobayashi M . J. Mater. Chem., 2005,15:653.
[29]
Hibino T . Chem. Mater., 2004,16:5482.
[30]
Liu Z, Ma R, Osada M, Iyi N, Ebina Y, Takada K, Sasaki T . J. Am. Chem. Soc., 2006,128:4872. https://www.ncbi.nlm.nih.gov/pubmed/16594724

doi: 10.1021/ja0584471 pmid: 16594724
[31]
Cavani F, Trifiro F, Vaccari A . Catal. Today, 1991,11:173.
[32]
Valente J S, Lima E, Toledo-Antonio J A, Cortes-Jacome M A, Lartundo-Rojas L, Montiel R, Prince J . J. Phys. Chem. C, 2010,114:2089.
[33]
Forano C, Costantino U, Prévot V, Gueho C T . Amsterdam: Elsevier, 2012,1.
[34]
You Y, ZhÅ H, Vance G F . Appl. Clay Sci., 2002,21:217.
[35]
El Gaini L, Lakraimi M, Sebbar E, Meghea A, Bakasse M . J. Hazard. Mater., 2009,161:627. https://www.ncbi.nlm.nih.gov/pubmed/18573613

doi: 10.1016/j.jhazmat.2008.04.089 pmid: 18573613
[36]
Extremera R, Pavlovic I, Pérez M, Barriga C . Chem. Eng. J., 2012,213:392.
[37]
Cheng X, Huang X, Wang X, Sun D . J. Hazard. Mater., 2010,177:516. https://www.ncbi.nlm.nih.gov/pubmed/20060217

doi: 10.1016/j.jhazmat.2009.12.063 pmid: 20060217
[38]
Laguna H, Loera S, Ibarra I A, Lima E, Vera M A, Lara V . Micropor. Mesopor. Mater., 2007,98:234.
[39]
Chibwe K, Jones W . Chem. Mater., 1989,1:489.
[40]
Prévot V, Forano C, Besse J P . Appl. Clay. Sci., 2001,18:3.
[41]
Chibwe K, Jones W . Chem. Commun., 1989,926.
[42]
Aisawa S, Hirahara H, Ishiyama K, Ogasawara W, Umetsu Y, Narita E . J. Solid State Chem., 2003,174:342.
[43]
Zhu M X, Li Y P, Xie M, Xin H Z . J. Hazard. Mater., 2005,120:163. https://www.ncbi.nlm.nih.gov/pubmed/15811678

doi: 10.1016/j.jhazmat.2004.12.029 pmid: 15811678
[44]
Auerbach S M, Carrado K A, Dutta P K. . United States: CRC Press. 2004,1.
[45]
Wang J D, Serrette G, Tian Y, Clearfield A . Appl. Clay. Sci., 1995,10:103.
[46]
Kwon T, Tsigdinos G A, Pinnavaia T J . J. Am. Chem. Soc., 1988,110:3653.
[47]
Wang J, Tian Y, Wang R C, Clearfield A . Chem. Mater., 1992,4:1276.
[48]
Weir M R, Kydd R A . Micropor. Mesopor. Mater., 1998,20:339.
[49]
Tatsumi T, Yamamoto K, Tajima H, Tominaga H O . Chem. Lett., 1992,21:815.
[50]
Tatsumi T, Tajima H, Yamamoto K, Tominaga H . Amsterdam: Elsevier, 1993,1.
[51]
Corma A, Fornes V, Rey F, Cervilla A, Llopis E, Ribera A . J. Catal., 1995,152:237.
[52]
Braterman P, Xu Z, Yarberry F . Amsterdam: Elsevier, 2004,1
[53]
Tichit D, Fajula F . Amsterdam: Elsevier, 1999,1
[54]
Carja G, Nakamura R, Aida T, Niiyama H . Micropor. Mesopor. Mater., 2001,47:275.
[55]
Yun S K, Pinnavaia T J . Chem. Mater., 1995,7:348.
[56]
Rives V . United States: Nova Publishers, 2001,1.
[57]
Costa F, Satapathy B, Wagenknecht U, Weidisch R, Heinrich G . Eur. Polym. J., 2006,42:2140.
[58]
Wang J, You J, Li Z, Yang P, Jing X, Zhang M . Nanoscale Res. Lett., 2008,3:338.
[59]
Carja G, Chiriac H, Lupu N . J. Mag. Magn. Mater., 2007,311:26.
[60]
Pérez-Ramírez J, Ribera A, Kapteijn F, Coronado E, Gómez-García C J . J. Mater. Chem., 2002,12:2370.
[61]
Milanovic N . Amsterdam: Elsevier, 2016,1
[62]
Almansa J J, Coronado E, Martí-Gastaldo C, Ribera A . European J. Inorgan. Chem., 2008,2008:5642.
[63]
Mills S, Christy A, Génin J M, Kameda T, Colombo F . Mineral. Mag., 2012,76:1289.
[64]
Miyata S . Clays. Clay Miner., 1975,23:369.
[65]
Duan X, Evans D G . United States: Springer, 2009,1.
[66]
Aisawa S, Takahashi S, Ogasawara W, Umetsu Y, Narita E . Clay Sci., 2000,11:317.
[67]
Bauer J, Behrens P, Speckbacher M, Langhals H . Adv. Func. Mater., 2003,13:241.
[68]
Zhang W, Guo X, He J, Qian Z . J. European Ceram. Soc., 2008,28:1623.
[69]
Seftel E, Popovici E, Mertens M, De Witte K, Van Tendeloo G, Cool P, Vansant E . Micropor. Mesopor. Mater., 2008,113:296.
[70]
Ogawa M, Asai S . Chem. Mater., 2000,12:3253.
[71]
Kovanda F, Koloušek D, Cílová Z, Hulínský V . Appl. Clay Sci., 2005,28:101.
[72]
Sharma S K, Kushwaha P K, Srivastava V K, Bhatt S D, Jasra R V . Indus. Eng. Chem. Res., 2007,46:4856.
[73]
Bravo-Suárez J J, Páez-Mozo E A, Oyama S T . Quimica Nova, 2004,27:601.
[74]
Xu Z P, Lu G Q . Chem. Mater., 2005,17:1055.
[75]
Zhao Y, Xiao F, Jiao Q . J. Nanotechnol., 2011,646409.
[76]
Carlino S . Solid State Ion., 1997,98:73.
[77]
Choy J H, Choi S J, Oh J M, Park T . Appl. Clay Sci., 2007,36:122.
[78]
Israëli Y, Taviot-Guého C, Besse J P, Morel J P, Morel-Desrosiers N . Dalton Trans., 2000,791.
[79]
Costantino U, Nocchetti M, Sisani M, Vivani R . Int. J. Mater. 2009,224:273.
[80]
Bullo Saifullah M Z B H . Intl. J. Nanomed., 2015,10:5609.
[81]
Guo X, Zhang F, Evans D G, Duan X . Chem. Commun., 2010,46:5197. https://www.ncbi.nlm.nih.gov/pubmed/20549015

doi: 10.1039/c0cc00313a pmid: 20549015
[82]
Han Y, Liu Z H, Yang Z, Wang Z, Tang X, Wang T, Fan L, Ooi K . Chem. Mater., 2007,20:360.
[83]
Ogawa M, Kaiho H . Langmuir, 2002,18:4240.
[84]
Adachi-Pagano M, Forano C, Besse J P . J. Mater. Chem., 2003,13:1988.
[85]
Benito P, Herrero M, Barriga C, Labajos F, Rives V . Inorg. Chem., 2008,47:5453. https://www.ncbi.nlm.nih.gov/pubmed/18494464

doi: 10.1021/ic7023023 pmid: 18494464
[86]
Dunn B, Zink J I . J. Am. Chem. Soc., 2007,122:11834
[87]
Huang J, Kunitake T . J. Am. Chem. Soc., 2003,125:11834. https://www.ncbi.nlm.nih.gov/pubmed/14505402

doi: 10.1021/ja037419k pmid: 14505402
[88]
Weatherspoon M R, Cai Y, Crne M, Srinivasarao M, Sandhage K H . Angew. Chem. Intl. Ed., 2008,47:7921. https://www.ncbi.nlm.nih.gov/pubmed/18773402

doi: 10.1002/anie.200801311 pmid: 18773402
[89]
Zhao Y, He S, Wei M, Evans D G, Duan X . Chem. Commun., 2010,46:3031. https://www.ncbi.nlm.nih.gov/pubmed/20386858

doi: 10.1039/b926906a pmid: 20386858
[90]
Prinetto F, Ghiotti G, Graffin P, Tichit D . Micropor. Mesopor. Mater., 2000,39:229.
[91]
Tichit D, Lorret O, Coq B, Prinetto F, Ghiotti G . Micropor. Mesopor. Mater., 2005,80:213.
[92]
Tokumoto M S, Pulcinelli S H, Santilli C V, Briois V . J. Phys. Chem. B, 2003,107:568.
[93]
Prevot V, Forano C, Besse J . Chem. Mater., 2005,17:6695.
[94]
Aramendıa M A, Borau V, Jiménez C, Marinas J M, Ruiz J R, Urbano F J . J. Solid State Chem., 2002,168:156.
[95]
Prince J, Montoya A, Ferrat G, Valente J S . Chem. Mater., 2009,21:5826.
[96]
Rojas R . Appl. Clay Sci., 2014,87:254.
[97]
Ma R, Liu Z, Takada K, Iyi N, Bando Y, Sasaki T . J. Am. Chem. Soc., 2007,129:5257. https://www.ncbi.nlm.nih.gov/pubmed/17394321

doi: 10.1021/ja0693035 pmid: 17394321
[98]
Hansen H C B, Koch C B, Taylor R M . J. Solid State Chem., 1994,113:46.
[99]
Meenakshi P, Sitharaman U, Rajamani N . J. Rare Earths, 2017,35:474.
[100]
Britto S, Kamath P V . J. Solid State Chem., 2009,182:1193.
[101]
Delgado R R, Vidaurre M A, de Pauli C, Ulibarri M, Avena M . J. Colloid Interf. Sci., 2004,280:431.
[102]
Hirata N, Tadanaga K, Tatsumisago M . Mater. Res. Bull., 2015,62:1.
[103]
Shao M, Han J, Wei M, Evans D G, Duan X . Chem. Eng. J., 2011,168:519.
[104]
Seftel E, Popovici E, Mertens M, de Witte K, van Tendeloo G, Cool P, Vansant E . Micropor. Mesopor. Mater, 2008,113:296.
[105]
Li Y, Li H, Yang M, He X, Ni P, Kang L, Liu Z H . Appl. Clay Sci., 2011,52:51.
[106]
Aisawa S, Hirahara H, Uchiyama H, Takahashi S, Narita E . J. Solid State Chem., 2002,167:152. https://linkinghub.elsevier.com/retrieve/pii/S0022459602996374

doi: 10.1006/jssc.2002.9637
[107]
Yao W, Yu S, Wang J, Zou Y, Lu S, Ai Y, Alharbi N S, Alsaedi A, Hayat T, Wang X . Chem. Eng. J., 2017,307:476.
[108]
Ulibarri M, Pavlovic I, Hermosin M, Cornejo J . Appl. Clay Sci., 1995,10:131.
[109]
Ulibarri M, Pavlovic I, Barriga C, Hermosın M, Cornejo J . Appl. Clay Sci., 2001,18:17.
[110]
Chaara D, Pavlovic I, Bruna F, Ulibarri M, Draoui K, Barriga C . Appl. Clay Sci., 2010,50:292.
[111]
Wang S L, Liu C H, Wang M K, Chuang Y H, Chiang P N . Appl. Clay Sci., 2009,43:79.
[112]
Yang L, Shahrivari Z, Liu P K, Sahimi M, Tsotsis T T . Indus. Eng. Chem. Res., 2005,44:6804. https://pubs.acs.org/doi/10.1021/ie049060u

doi: 10.1021/ie049060u
[113]
Chao Y F, Chen P C, Wang S L . Appl. Clay Sci., 2008,40:193. https://linkinghub.elsevier.com/retrieve/pii/S0169131707001585

doi: 10.1016/j.clay.2007.09.003
[114]
Li S S, Jiang M, Jiang T J, Liu J H, Guo Z, Huang X J . J. Hazard. Mater., 2017,338:1. https://www.ncbi.nlm.nih.gov/pubmed/28531655

doi: 10.1016/j.jhazmat.2017.05.017 pmid: 28531655
[115]
Pshinko G . J. Chem., 2013,2013.
[116]
Ardau C, Frau F, Nieddu G, Fanfani L . Water Mining Environ., 2007,385.
[117]
Goswamee R L, Sengupta P, Bhattacharyya K G, Dutta D K . Appl. Clay Sci., 1998,13:21.
[118]
Koilraj P, Kannan S . Chem. Eng. J., 2013,234:406.
[119]
Liu X, Zhao X, Zhu Y, Zhang F . Appl. Catal. B Environ., 2013,140:241.
[120]
De Sá F P, Cunha B N, Nunes L M . Chem. Eng. J., 2013,215:122.
[121]
Wang Q, O’Hare D . Chem. Commun., 2013,49:6301. https://www.ncbi.nlm.nih.gov/pubmed/23739826

doi: 10.1039/c3cc42918k pmid: 23739826
[122]
Wang Q, Gao Y, Luo J, Zhong Z, Borgna A, Guo Z, O’Hare D . RSC Adv., 2013,3:3414.
[123]
Gao Y, Zhang Z, Wu J, Yi X, Zheng A, Umar A, O’Hare D, Wang Q . J. Mater. Chem. A, 2013,1:12782.
[124]
Ling F, Fang L, Lu Y, Gao J, Wu F, Zhou M, Hu B . Micropor. Mesopor. Mater., 2016,234:230.
[125]
Yang Z, Wang F, Zhang C, Zeng G, Tan X, Yu Z, Zhong Y, Wang H, Cui F . RSC Adv., 2016,6:79415.
[126]
Daud M, Kamal M S, Shehzad F, Al-Harthi M A . Carbon, 2016,104:241.
[127]
Fang Q, Chen B . J. Mater. Chem. A, 2014,2:8941.
[128]
Tan L, Wang Y, Liu Q, Wang J, Jing X, Liu L, Liu J, Song D . Chem. Eng. J., 2015,259:752.
[129]
Wen T, Wu X, Tan X, Wang X, Xu A . ACS Appl. Interf. Sci., 2013,5:3304.
[130]
Yuan X, Wang Y, Wang J, Zhou C, Tang Q, Rao X . Chem. Eng. J., 2013,221:204. https://linkinghub.elsevier.com/retrieve/pii/S1385894713001368

doi: 10.1016/j.cej.2013.01.090
[131]
Zhang F, Song Y, Song S, Zhang R, Hou W . ACS Appl. Interf. Sci., 2015,7:7251.
[132]
Corma A, Fornes V, Martin-Aranda R, Rey F . J. Catal., 1992,134:58.
[133]
Yang R, Gao Y, Wang J, Wang Q . Dalton Trans., 2014,43:10317. http://xlink.rsc.org/?DOI=c3dt52896k

doi: 10.1039/c3dt52896k
[134]
Prinetto F, Ghiotti G, Durand R, Tichit D . J. Phys. Chem. B, 2000,104:11117. https://pubs.acs.org/doi/10.1021/jp002715u

doi: 10.1021/jp002715u
[135]
Di Cosimo J, Dıez V, Xu M, Iglesia E, Apesteguıa C . J. Catal., 1998,178:499. https://linkinghub.elsevier.com/retrieve/pii/S0021951798921613

doi: 10.1006/jcat.1998.2161
[136]
Takehira K . Appl. Clay Sci., 2017,136:112. https://linkinghub.elsevier.com/retrieve/pii/S0169131716305117

doi: 10.1016/j.clay.2016.11.012
[137]
Yuan S, Li Y, Zhang Q, Wang H . Colloid. Surf. A, 2009,348:76. https://linkinghub.elsevier.com/retrieve/pii/S0927775709004063

doi: 10.1016/j.colsurfa.2009.06.040
[138]
Parida K, Satpathy M, Mohapatra L . J. Mater. Chem., 2012,22:7350. http://xlink.rsc.org/?DOI=c2jm15658j

doi: 10.1039/c2jm15658j
[139]
Zhang L, Li F, Evans D, Duan X . Indus. Eng. Chem. Res., 2010,49:5959. https://pubs.acs.org/doi/10.1021/ie9019193

doi: 10.1021/ie9019193
[140]
Dinari M, Momeni M M, Ghayeb Y . J. Mater. Sci., 2016,27:9861.
[141]
Shu X, He J, Chen D, Wang Y . J. Phys. Chem. C, 2008,112:4151. https://pubs.acs.org/doi/10.1021/jp711091m

doi: 10.1021/jp711091m
[142]
Zhang L, Xiong Z, Zhao G . Amsterdam: Elsevier, 2015,1.
[143]
Valente J S, Tzompantzi F, Prince J . Appl. Catal. B Environ., 2011,102:276. https://linkinghub.elsevier.com/retrieve/pii/S0926337310005400

doi: 10.1016/j.apcatb.2010.12.009
[144]
Lu R, Xu X, Chang J, Zhu Y, Xu S, Zhang F . Appl. Catal. B Environ., 2012,111:389.
[145]
Parida K, Mohapatra L . Chem. Eng. J., 2012,179:131. https://linkinghub.elsevier.com/retrieve/pii/S138589471101309X

doi: 10.1016/j.cej.2011.10.070
[146]
Das N, Tichit D, Durand R, Graffin P, Coq B . Catal. Lett., 2001,71:181. http://link.springer.com/10.1023/A:1009007321914

doi: 10.1023/A:1009007321914
[147]
Unnikrishnan R, Narayanan S . J. Mol. Catal. A, 1999,144:173. https://linkinghub.elsevier.com/retrieve/pii/S1381116998003550

doi: 10.1016/S1381-1169(98)00355-0
[148]
Tronto J, Crepaldi E L, Pavan P C, Cipriano De Paula C, Valim J B . Mol. Cryst. Liq. Cryst., 2001,356:227. https://www.tandfonline.com/doi/full/10.1080/10587250108023703

doi: 10.1080/10587250108023703
[149]
Choy J H, Oh J M, Park M, Sohn K M, Kim J W . Adv. Mater., 2004,16:1181. http://doi.wiley.com/10.1002/%28ISSN%291521-4095

doi: 10.1002/(ISSN)1521-4095
[150]
Aisawa S, Takahashi S, Ogasawara W, Umetsu Y, Narita E . J. Solid State Chem., 2001,162:52. https://linkinghub.elsevier.com/retrieve/pii/S0022459601993405

doi: 10.1006/jssc.2001.9340
[151]
Zebda A, Tingry S, Innocent C, Cosnier S, Forano C, Mousty C . Electrochim. Acta, 2011,56:10378. https://linkinghub.elsevier.com/retrieve/pii/S0013468611001757

doi: 10.1016/j.electacta.2011.01.101
[152]
Drezdzon M A . Inorg. Chem., 1988,27:4628. https://www.ncbi.nlm.nih.gov/pubmed/20491106

doi: 10.1002/anie.201001003 pmid: 20491106
[153]
Tronto J, dos Reis M J, Silvério F, Balbo V R, Marchetti J M, Valim J B . J. Phys. Chem. Solids, 2004,65:475. https://linkinghub.elsevier.com/retrieve/pii/S0022369703004335

doi: 10.1016/j.jpcs.2003.09.019
[154]
Al-Gohary O M, Hosny E A . Pharmaceut. Acta, 1997,72:81.
[155]
Al-Gohary O M, Al-Kassas R S . Pharmaceut. Acta, 2000,74:351.
[156]
Wei M, Yuan Q, Evans D G, Wang Z, Duan X . J. Mater. Chem., 2005,15:1197. http://xlink.rsc.org/?DOI=B416068A

doi: 10.1039/B416068A
[157]
Li F, Jin L, Han J, Wei M, Li C . Indus. Eng. Chem. Res., 2009,48:5590. https://pubs.acs.org/doi/10.1021/ie900043r

doi: 10.1021/ie900043r
[158]
Shan D, Cosnier S, Mousty C . Analyt. Chem., 2003,75:3872. https://pubs.acs.org/doi/10.1021/ac030030v

doi: 10.1021/ac030030v
[159]
De Melo J, Cosnier S, Mousty C, Martelet C, Jaffrezic-Renault N . Analyt. Chem., 2002,74:4037. https://www.ncbi.nlm.nih.gov/pubmed/12199571

doi: 10.1021/ac025627+ pmid: 12199571
[160]
Ai H, Huang X, Zhu Z, Liu J, Chi Q, Li Y, Li Z, Ji X . Biosens. Bioelectron., 2008,24:1048. https://linkinghub.elsevier.com/retrieve/pii/S0956566308004089

doi: 10.1016/j.bios.2008.07.039
[161]
Forano C, Vial S, Mousty C . Curr. Nanosci., 2006,2:283. lt;![CDATA[http://www.eurekaselect.com/openurl/content.php?genre=article&issn=1573-4137&volume=2&issue=3&spage=283]]>

doi: 10.2174/1573413710602030283
[162]
Desigaux L, Belkacem M B, Richard P, Cellier J, Léone P, Cario L, Leroux F, Taviot-Guého C, Pitard B . Nano Lett., 2006,6:199. https://www.ncbi.nlm.nih.gov/pubmed/16464034

doi: 10.1021/nl052020a pmid: 16464034
[163]
Oh J M, Kwak S Y, Choy J H . J. Phys. Chem. Solids, 2006,67:1028. https://linkinghub.elsevier.com/retrieve/pii/S0022369706000321

doi: 10.1016/j.jpcs.2006.01.080
[164]
Williams G R, O’Hare D . J. Mater. Chem., 2006,16:3065. http://xlink.rsc.org/?DOI=b604895a

doi: 10.1039/b604895a
[165]
Reddy M R, Xu Z, Lu G, Diniz da Costa J . Indus. Eng. Chem. Res., 2008,47:7357. https://pubs.acs.org/doi/10.1021/ie8004226

doi: 10.1021/ie8004226
[166]
Yoon S, Moon J, Bae S, Duan X, Giannelis E P, Monteiro P M . Mater. Chem. Phys., 2014,145:376. https://linkinghub.elsevier.com/retrieve/pii/S0254058414001163

doi: 10.1016/j.matchemphys.2014.02.026
[167]
Ge Y, Kan K, Yang Y, Zhou L, Jing L, Shen P, Li L, Shi K . J. Mater. Chem. A, 2014,2:4961. http://xlink.rsc.org/?DOI=c3ta14607c

doi: 10.1039/c3ta14607c
[1] Dandan Wang, Zhaoxin Lin, Huijie Gu, Yunhui Li, Hongji Li, Jing Shao. Modification and Application of Bi2MoO6 in Photocatalytic Technology [J]. Progress in Chemistry, 2023, 35(4): 606-619.
[2] Xuedan Qian, Weijiang Yu, Junzhe Fu, Youxiang Wang, Jian Ji. Fabrication and Biomedical Application of Hyaluronic Acid Based Micro- and Nanogels [J]. Progress in Chemistry, 2023, 35(4): 519-525.
[3] Xu Zhang, Lei Zhang, Shanen Huang, Zhifang Chai, Weiqun Shi. Preparation of Salt-Inclusion Materials in High-Temperature Molten Salt System and Their Potential Application [J]. Progress in Chemistry, 2022, 34(9): 1947-1956.
[4] Shuaiwei Peng, Zhuofu Tang, Bing Lei, Zhiyuan Feng, Honglei Guo, Guozhe Meng. Design and Application of Bionic Surface for Directional Liquid Transportation [J]. Progress in Chemistry, 2022, 34(6): 1321-1336.
[5] Jiahui Ma, Wei Yuan, Simin Liu, Zhiyong Zhao. Self-Assembly of Small Molecule Modified DNA and Their Application in Biomedicine [J]. Progress in Chemistry, 2022, 34(4): 837-845.
[6] Xueer Cai, Meiling Jian, Shaohong Zhou, Zefeng Wang, Kemin Wang, Jianbo Liu. Chemical Construction of Artificial Cells and Their Biomedical Applications [J]. Progress in Chemistry, 2022, 34(11): 2462-2475.
[7] Zitong Zhao, Zhenzhen Zhang, Zhihong Liang. The Activity Origin, Catalytic Mechanism and Future Application of Peptide-Based Artificial Hydrolase [J]. Progress in Chemistry, 2022, 34(11): 2386-2404.
[8] Xuechuan Wang, Yansong Wang, Qingxin Han, Xiaolong Sun. Small-Molecular Organic Fluorescent Probes for Formaldehyde Recognition and Applications [J]. Progress in Chemistry, 2021, 33(9): 1496-1510.
[9] Song Jiang, Jiapei Wang, Hui Zhu, Qin Zhang, Ye Cong, Xuanke Li. Synthesis and Applications of Two-Dimensional V2C MXene [J]. Progress in Chemistry, 2021, 33(5): 740-751.
[10] Yuzhou Yang, Zheng Li, Yanfeng Huang, Jixian Gong, Changsheng Qiao, Jianfei Zhang. Preparation and Application of MOF-Based Hydrogel Materials [J]. Progress in Chemistry, 2021, 33(5): 726-739.
[11] Xiansheng Luo, Hanlin Deng, Jiangying Zhao, Zhihua Li, Chunpeng Chai, Muhua Huang. Synthesis and Application of Holey Nitrogen-Doped Graphene Material(C2N) [J]. Progress in Chemistry, 2021, 33(3): 355-367.
[12] Pingping Zhao, Junxing Yang, Jianhui Shi, Jingyi Zhu. Construction and Application of Dendrimer-Based SPECT Imaging Agent [J]. Progress in Chemistry, 2021, 33(3): 394-405.
[13] Xiang Xu, Kun Li, Qingya Wei, Jun Yuan, Yingping Zou. Organic Solar Cells Based on Non-Fullerene Small Molecular Acceptor Y6 [J]. Progress in Chemistry, 2021, 33(2): 165-178.
[14] Jun Jin, Ziheng Lin, Lei Shi. One-Dimensional New Carbon Allotrope: Carbon Chain [J]. Progress in Chemistry, 2021, 33(2): 188-198.
[15] Miao Qin, Mengjie Xu, Di Huang, Yan Wei, Yanfeng Meng, Weiyi Chen. Iron Oxide Nanoparticles in the Application of Magnetic Resonance Imaging [J]. Progress in Chemistry, 2020, 32(9): 1264-1273.