中文
Announcement
More
Progress in Chemistry 2018, Vol. 30 Issue (12): 2012-2024 DOI: 10.7536/PC180446 Previous Articles   

• Review •

Application of the Tianium, Nickel and Iron Complexes in the Hydrosilylation

Xiaoling Yang, Ying Bai*, Jiayun Li, Zinan Dai, Jiajian Peng*   

  1. Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the Natural Science Foundation of Zhejiang Province(No.LY18B020012) and the Zhejiang Provincial Technologies R&D Program of China(No.2017C31105).
PDF ( 391 ) Cited
Export

EndNote

Ris

BibTeX

Tianium, nickel and iron complexes as catalysts have been widely applied in numerous catalytic organic reactions, in which these complexes show excellent catalytic performance and have been recognized as very important research field. We summarize the recent progress in the synthesis of titanium, nickel and iron complexes and their application in the catalytic hydrosilylation of alkenes, alkynes, carbonyl compounds and other unsaturated double bond, triple bond compounds. Furthermore, the deficiencies of the catalysts have been discussed. At last, the future development and prospects of these complexes as catalysts are also proposed.
Contents
1 Introduction
2 Application of the tianium complexes in the hydrosilylation
3 Application of the nickel complexes in the hydrosilylation
4 Application of the iron complexes in the hydrosilylation
5 Conclusion

CLC Number: 

[1] Tondreau A M, Atienza C C H, Weller K J, Nye S A, Lewis K M, Delis J G P, Chirik P J. Science, 2012, 335(6068):567.
[2] Daisuke N, Atsushi T, Yusuke S, Hideo N. J. Am. Chem. Soc., 2016, 138(8):2480.
[3] Du X, Huang Z. ACS Catal., 2017, 7(2):1227.
[4] Zhang M, Zhang A. Appl. Organometal. Chem., 2010, 24(11):751.
[5] Nakajima Y, Shimada S. RSC Adv., 2015, 5:20603.
[6] Pop R, Cui J L, Adriaenssens L, Comte V, Gendre P L. Synlett, 2011, (5):679.
[7] Garcia J, Meyer D J M, Guillaneux D, Moreau J J E, Man M W C. J. Organomet. Chem., 2009, 694(15):2427.
[8] Eguchi K, Aoyagi K, Nakajima Y, Ando W, Sato K, Shimada S. Chem. Lett., 2017, 46(8):1262.
[9] Gruber-Woelfler H, Lichtenegger G J, Neubauer C, Polo E, Khinast J G. Dalton Trans., 2012, 41(41):12711.
[10] Henriques D S G, Zimmer K, Klare S, Meyer A, Rojo-Wiechel E, Bauer M, Sure R, Grimme S, Schiemann O, Flowers R A, Gansäuer A. Angew. Chem. Int. Ed., 2016, 55(27):7671.
[11] Petit C, Reguillon A F, Albela B, Bonneviot L, Mignani G, Lemaire M. Organometallics, 2009, 28(22):6379.
[12] Laval S, Dayoub W, Reguillon A F, Demonchaux P, Mignani G, Lemaire M. Tetrahedron Letters, 2010, 51(16):2092.
[13] Takuya K. Bull. Chem. Soc. Jpn., 2014, 87(10):1058.
[14] Nakajima Y, Sato K, Shimada S. Chem. Rec., 2016, 16(8):2379.
[15] Buslov I, Becouse J, Mazz, S, Montandon-Clerc M, Hu X. Angew. Chem. Int. Ed., 2015, 54(48):14523.
[16] Buslov I, Keller S C, Hu X. Org. Lett., 2016, 18(8):1928.
[17] Buslov I, Song F, Hu X. Angew. Chem. Int. Ed., 2016, 55(40):12295.
[18] Pappas I, Treacy S, Chirik P J. ACS Catal., 2016, 6:4105.
[19] Porter T M, Hall G B, Groy T L, Trovitch R J. Dalton Trans., 2013, 42(48):14689.
[20] Srinivas V, Nakajima Y, Ando W, Sato K, Shimada S. Catal. Sci. Technol., 2015, 5(4):2081.
[21] Srinivas V, Nakajima Y, Ando W, Sato K, Shimada S. J. Organomet. Chem., 2016, 809(1):57.
[22] Mathew J, Nakajima Y, Choe Y K, Urabe Y, Ando W, Sato K, Shimada S. Chem. Commun., 2016, 52(40):6723.
[23] Takachi M, Chatani N. Org. Lett., 2010, 12(22):5132.
[24] Rock C L, Groy T L, Trovitch R J. Dalton Trans., 2018, 47(26):8807.
[25] Junquera L B, Puerta M C, Valerga P. Organometallics, 2012, 31(6):2175.
[26] Miller Z D, Li W, Belderrain T R, Montgomery J. J. Am. Chem. Soc., 2013, 135(41):15282.
[27] Iglesias M J, Blandez J F, Fructos M R, Prieto A, Alvarez E, Belderrain T R, Nicasio M C. Organometallics, 2012, 31(17):6312.
[28] Miller Z D, Dorel R, Montgomery J. Angew. Chem. Int. Ed., 2015, 54(31):9088.
[29] Wei Y F, Petronilho A, Mueller-Bunz H, Albrecht M. Organometallics, 2014, 33(20):5834.
[30] Wei Y F, Liu S X, Mueller-Bunz H, Albrecht M. ACS Catal., 2016, 6(12):8192.
[31] Wenz J, Wadepohl H, Gade L H. Chem. Commun., 2017, 53(31):4308.
[32] Rocquin M, Ritleng V, Barroso S, Martins A M, Chetcuti M J. J. Organomet. Chem., 2016, 808(1):57.
[33] Bheeter L P, Henrion M, Brelot L, Darcel C, Chetcuti M, Sortais J B, Ritleng V. Adv. Synth. Catal., 2012, 354(14/15):2619.
[34] Bheeter L P, Henrion M, Chetcuti M J, Darcel C, Ritleng V, Sortais J B. Catal. Sci. Technol., 2013, 3(12):3111.
[35] Xu Z, Lu X H, Xia Q H, Lou Z W, Ye C P, Liu Z M. Catal. Commun., 2008, 9(8):1793.
[36] Zheng J X, Darcel C, Sortais J B. Catal. Sci. Technol., 2013, 3(1):81.
[37] Tafazolian H, Yoxtheimer R, Thakuri R S, Schmidt J A R. Dalton Trans., 2017, 46(16):5431.
[38] MacMillan S N, Harman W H, Peters J C. Chem. Sci., 2014, 5(2):590.
[39] Wu F F, Zhou J N, Fang Q, Hu Y H, Li S, Zhang X C, Chan A S C, Wu J. Chem. Asian. J., 2012, 7(11):2527.
[40] Sun S, Quan Z, Wang X. RSC Adv., 2015, 5(103):84574.
[41] Vijaykumar G, Mandal S K. Dalton Trans., 2016, 45(17):7421.
[42] Crossley S W M, Obraddors C, Martinez R M. Chem. Rev., 2016, 116(15):8912.
[43] Hayasaka K, Kamata K, Nakazawa H. Bull. Chem. Soc. Jpn., 2016, 89(3):394.
[44] Toya Y, Hayasaka K, Nakazawa H. Organometallics, 2017, 36(9):1727.
[45] Sunada Y, Noda D, Soejima H, Tsutsumi H, Nagashima H. Organometallics, 2015, 34(12):2896.
[46] Cheng B, Liu W, Lu Z. J. Am. Chem. Soc., 2018, 140(15):5014.
[47] Lin H J, O'Kane C, Zeller M, Chen C H, Assil T A, Lee W T. Dalton Trans., 2018, 47(10):3243.
[48] Supej M J, Volkov A, Darko L, West R A, Darmon J M, Schulz C E, Wheeler K A, Hoyt H M. Polyhedron, 2016, 114:403.
[49] Yu X, Zhu F, Bu D, Lei H. RSC Adv., 2017, 7:15321.
[50] Wang Y, Ren S, Zhang W, Xue B, Qi X, Sun H, Li X, Fuhr O, Fenske D. Catal. Commun., 2018, 115(1):1.
[51] Zheng T, Li J, Zhang S, Xue B, Sun H, Li X, Fuhr O, Fenske D. Organometallics, 2016, 35(20):3538.
[52] Ren S, Xie S, Zheng T, Wang Y, Xu S, Xue B, Li X, Sun H, Fuhr O, Fenske D. Dalton Trans., 2018, 47(12):4352.
[53] Xue B, Sun H, Niu Q, Li X, Fuhr O, Fenske D. Catal. Commun., 2017, 94(1):23.
[54] Johnson C, Albrecht M. Organometallics, 2017, 36(15):2902.
[55] Raya-Barón Á, Ortuño M A, Oña-Burgos P, RodrÍguez-Diéguez A, Langer R, Carmer C J, Kuzu I, Fernández I. Organometallics, 2016, 35(24):4083.
[56] Raya-Barón Á, Galdeano-Ruano C P, Oña-Burgos P, RodrÍguez-Diéguez A, Langer R, López-Ruiz R, Romero-González R, Kuzu I, Fernández I. Dalton Trans., 2018, 47(21):7272.
[57] Ito M, Itazaki M, Nakazawa H. ChemCatChem, 2016, 8(21):3323.
[58] Jung T C, Argouarch G, Weghe P. Catal. Commun., 2016, 78(1):52.
[1] Lan Mingyan, Zhang Xiuwu, Chu Hongyu, Wang Chongchen. MIL-101(Fe) and Its Composites for Catalytic Removal of Pollutants: Synthesis Strategies, Performances and Mechanisms [J]. Progress in Chemistry, 2023, 35(3): 458-474.
[2] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[3] Kelong Fan, Lizeng Gao, Hui Wei, Bing Jiang, Daji Wang, Ruofei Zhang, Jiuyang He, Xiangqin Meng, Zhuoran Wang, Huizhen Fan, Tao Wen, Demin Duan, Lei Chen, Wei Jiang, Yu Lu, Bing Jiang, Yonghua Wei, Wei Li, Ye Yuan, Haijiao Dong, Lu Zhang, Chaoyi Hong, Zixia Zhang, Miaomiao Cheng, Xin Geng, Tongyang Hou, Yaxin Hou, Jianru Li, Guoheng Tang, Yue Zhao, Hanqing Zhao, Shuai Zhang, Jiaying Xie, Zijun Zhou, Jinsong Ren, Xinglu Huang, Xingfa Gao, Minmin Liang, Yu Zhang, Haiyan Xu, Xiaogang Qu, Xiyun Yan. Nanozymes [J]. Progress in Chemistry, 2023, 35(1): 1-87.
[4] Hao Chen, Xu Xu, Chaonan Jiao, Hao Yang, Jing Wang, Yinxian Peng. Fabrication of Multifunctional Core-Shell Structured Nanoreactors and Their Catalytic Performances [J]. Progress in Chemistry, 2022, 34(9): 1911-1934.
[5] Dang Zhang, Xi Wang, Lei Wang. Biomedical Applications of Enzyme-Powered Micro/Nanomotors [J]. Progress in Chemistry, 2022, 34(9): 2035-2050.
[6] Bowen Xia, Bin Zhu, Jing Liu, Chunlin Chen, Jian Zhang. Synthesis of 2,5-Furandicarboxylic Acid by the Electrocatalytic Oxidation [J]. Progress in Chemistry, 2022, 34(8): 1661-1677.
[7] Huiyue Wang, Xin Hu, Yujing Hu, Ning Zhu, Kai Guo. Enzyme-Catalyzed Atom Transfer Radical Polymerization [J]. Progress in Chemistry, 2022, 34(8): 1796-1808.
[8] Ru Jiang, Chenxu Liu, Ping Yang, Shuli You. Condensed Matter Chemistry in Asymmetric Catalysis and Synthesis [J]. Progress in Chemistry, 2022, 34(7): 1537-1547.
[9] Xinglong Li, Yao Fu. Preparation of Furoic Acid by Oxidation of Furfural [J]. Progress in Chemistry, 2022, 34(6): 1263-1274.
[10] Peng Wang, Huan Liu, Da Yang. Recent Advances on Tandem Hydroformylation of Olefins [J]. Progress in Chemistry, 2022, 34(5): 1076-1087.
[11] Xiaoqing Ma. Graphynes for Photocatalytic and Photoelectrochemical Applications [J]. Progress in Chemistry, 2022, 34(5): 1042-1060.
[12] Xiaowei Li, Lei Zhang, Qixin Xing, Jinyu Zan, Jin Zhou, Shuping Zhuo. Construction of Magnetic NiFe2O4-Based Composite Materials and Their Applications in Photocatalysis [J]. Progress in Chemistry, 2022, 34(4): 950-962.
[13] Fengshou Yu, Jiayu Zhan, Lu-Hua Zhang. The progress on Electrochemical CO2-to-Formate Conversion by p-Block Metal Based Catalysts [J]. Progress in Chemistry, 2022, 34(4): 983-991.
[14] Hao Sun, Chaopeng Wang, Jun Yin, Jian Zhu. Fabrication of Electrocatalytic Electrodes for Oxygen Evolution Reaction [J]. Progress in Chemistry, 2022, 34(3): 519-532.
[15] Xin Pang, Shixiang Xue, Tong Zhou, Hudie Yuan, Chong Liu, Wanying Lei. Advances in Two-Dimensional Black Phosphorus-Based Nanostructures for Photocatalytic Applications [J]. Progress in Chemistry, 2022, 34(3): 630-642.