中文
Announcement
More
Progress in Chemistry 2019, Vol. 31 Issue (2/3): 236-244 DOI: 10.7536/PC180445 Previous Articles   Next Articles

Interactions between Graphene Materials and Proteins

Xiaojuan Wang**(), Zhenzhen Liu, Qi Chen, Xiaoqiang Wang, Fang Huang**()   

  1. 1. College of Chemical Engineering, China University of Petroleum(East China), Qingdao 266580, China
  • Received: Online: Published:
  • Contact: Xiaojuan Wang, Fang Huang
  • About author:
    ** E-mail: (Xiaojuan Wang);
    (Fang Huang)
  • Supported by:
    Natural Science Foundation of Shandong Province(ZR2017MB039); Key Technologies R&D Program of Shandong Province(2018GGX102025); Qingdao People’s Livelihood Science and Technology Project(17-3-3-76-nsh)
Richhtml ( 32 ) PDF ( 740 ) Cited
Export

EndNote

Ris

BibTeX

Relying on the excellent physical and chemical properties, graphene materials have attracted great attention in the biomedical field and shown broad application prospects. It needs to be noted that when graphene materials are used for bio-applications, such as drug delivery, medical sensing and bioimaging, they will interact inevitably with various proteins and result in the changing of their own properties as well as the variation of proteins’ conformation and functions. Therefore, a lot of studies have been carried out to investigate the interactions between graphene materials and protein molecules, which is of vital importance for understanding and evaluating the biological effects of graphene materials. In this content, the representative scientific researches on this topic are reviewed. The molecular mechanisms of the interactions between various materials of the graphene family and proteins are summarized, and the newly developed biotechnologies based on the graphene material / protein interactions are introduced. Finally, some personal perspectives of the further research directions in this field are presented.

Fig. 1 Schematic illustration of the interaction between graphene and protein[30]. Copyright 2011, ACS
Fig. 2 Schematic depiction of the strategies used to interface Concanavalin A to single-layer graphene and evaluate its carbohydrate-binding function[37]. Copyright 2013, ACS
Fig. 3 Schematic illustration of trypsin immobilization onto GO with multiple biocompatible polymers including poly-L-lysine(PL) and PEG-diglycolic acid[52]. Copyright 2012, RSC
Fig. 4 Relative amounts α-helix(A, A’), β-sheet(B, B’), β-turn(C, C’), and random coil(D, D’) of Glucose Oxidase(GOx) in the native state(A~D, 300 mg/mL) and in the GOx-GO bioconjugate system(A’~D’) with GOx concentration of 300 mg/mL and GO concentration of 25 mg/mL[55]. Copyright 2012, RSC
Fig. 5 Covalent attachment between HRP and RGO[66]. Copyright 2018, Elsevier
Fig. 6 Schematic illustration of core-shell protein-graphene-protein(PGP) capsules encapsulating hydrophilic doxorubicin[74]. Copyright 2014, John Wiley and Sons
[1]
Mahmoudi M, Lynch I, Ejtehadi M R, Monopoli M P, Bombelli F B, Laurent S . Chemical Reviews, 2011,111:5610. 0068652d-eb4b-47a4-ba76-12b5e73bd46ehttps://www.ncbi.nlm.nih.gov/pubmed/21688848

doi: 10.1021/cr100440g pmid: 21688848
[2]
Singh C, Ali M A, Reddy V, Singh D, Kim C G, Sumana G, Malhotra B D . Sensors and Actuators B: Chemical, 2018,255:2495. https://linkinghub.elsevier.com/retrieve/pii/S0925400517317197

doi: 10.1016/j.snb.2017.09.054
[3]
Rauf S, Mishra G K, Azhar J, Mishra R K, Goud K Y, Nawaz M A H, Marty J L, Hayat A . Analytical Biochemistry, 2018,545:13. https://www.ncbi.nlm.nih.gov/pubmed/29339058

doi: 10.1016/j.ab.2018.01.007 pmid: 29339058
[4]
Zheng X T, Ananthanarayanan A, Luo K Q, Chen P . Small, 2015,11:1620. https://www.ncbi.nlm.nih.gov/pubmed/25521301

doi: 10.1002/smll.201402648 pmid: 25521301
[5]
Tang J, Kong B, Wu H, Xu M, Wang Y, Wang Y, Zhao D, Zheng G . Advanced Materials, 2013,25:6569. https://www.ncbi.nlm.nih.gov/pubmed/23996326

doi: 10.1002/adma.201303124 pmid: 23996326
[6]
Dong H, Dai W, Ju H, Lu H, Wang S, Xu L, Zhou S F, Zhang Y, Zhang X . ACS Applied Materials & Interfaces, 2015,7:11015. https://www.ncbi.nlm.nih.gov/pubmed/25942410

doi: 10.1021/acsami.5b02803 pmid: 25942410
[7]
Bianco A, Cheng H M, Enoki T, Gogotsi Y, Hurt R H, Koratkar N, Kyotani T, Monthioux M, Park C R, Tascon J M D, Zhang J . Carbon, 2013,65:1. f3f94285-5585-470d-a0a0-57a4a3f9236ehttp://dx.doi.org/10.1016/j.carbon.2013.08.038

doi: 10.1016/j.carbon.2013.08.038
[8]
Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A . Science, 2004,306:666. https://www.ncbi.nlm.nih.gov/pubmed/15499015

doi: 10.1126/science.1102896 pmid: 15499015
[9]
Ma S, Si Y, Wang F, Su L, Xia C, Yao J, Chen H, Liu X . Scientific Reports, 2017,7:2588. https://www.ncbi.nlm.nih.gov/pubmed/28566735

doi: 10.1038/s41598-017-02620-4 pmid: 28566735
[10]
Wang X, Wang Y, He H, Chen X, Sun X, Sun Y, Zhou G, Xu H, Huang F . Journal of Materials Chemistry B, 2016,4:779. https://www.ncbi.nlm.nih.gov/pubmed/32262959

doi: 10.1039/c5tb02474a pmid: 32262959
[11]
Dowaidrar M, Abdelhamind H N, Hällbrink M, Zou X, Langel Ü . Biochimica et Biophysica Acta, 2017,1861:2334. https://www.ncbi.nlm.nih.gov/pubmed/28689990

doi: 10.1016/j.bbagen.2017.07.002 pmid: 28689990
[12]
Hu W, Peng C, Luo W, Lv M, Li X, Li D, Huang Q, Fan C . ACS Nano, 2010,4.
[13]
Ruiz O N, Fernando K A S, Wang B, Brown N A, Luo P G, McNamara N D, Vangsness M, Sun Y P, Bunker C E . ACS Nano, 2011,5.
[14]
Yang K, Li Y, Tan X, Peng R, Liu Z . Small, 2013,9:1492. https://www.ncbi.nlm.nih.gov/pubmed/22987582

doi: 10.1002/smll.201201417 pmid: 22987582
[15]
Volkov Y, McIntyre J, Prina-Mello A . 2D Materials, 2017,4:022001.
[16]
Sasidharan A, Panchakarla L S, Chandran P, Menon D, Nair S, Rao C N R, Koyakutty M . Nanoscale, 2011,3:2461. https://www.ncbi.nlm.nih.gov/pubmed/21562671

doi: 10.1039/c1nr10172b pmid: 21562671
[17]
Jiao G, He X, Li X, Qiu J, Xu H, Zhang N, Liu S . RSC Advances, 2015,5:53240.
[18]
Jarosz A, Skoda M, Dudek I, Szukiewicz D . Oxidative Medicine and Cellular Longevity, 2016,2016:5851035. https://www.ncbi.nlm.nih.gov/pubmed/26649139

doi: 10.1155/2016/5851035 pmid: 26649139
[19]
Chang Y, Yang S T, Liu J H, Dong E, Wang Y, Cao A, Liu Y, Wang H . Toxicology Letters, 2011,200:201. https://www.ncbi.nlm.nih.gov/pubmed/21130147

doi: 10.1016/j.toxlet.2010.11.016 pmid: 21130147
[20]
Akhavan O, Ghaderi E . ACS Nano, 2010,4:5731. https://www.ncbi.nlm.nih.gov/pubmed/20925398

doi: 10.1021/nn101390x pmid: 20925398
[21]
Nurunnabi M, Khatun Z, Huh K M, Park S Y, Lee D Y, Cho K J, Lee Y K . ACS Nano, 2013,7:6858. https://www.ncbi.nlm.nih.gov/pubmed/23829293

doi: 10.1021/nn402043c pmid: 23829293
[22]
Nafiujjaman M, Kim J, Park H K, Lee Y K . Journal of Industrial and Engineering Chemistry, 2018,57:171.
[23]
Pan D, Guo L, Zhang J, Xi C, Xue Q, Huang H, Li J, Zhang Z, Yu W, Chen Z, Li Z, Wu M . Journal of Materials Chemistry, 2012,22:3314.
[24]
Peng J, Gao W, Gupta B K, Liu Z, Romero-Aburto R, Ge L, Song L, Alemany L B, Zhan X, Gao G, Vithayathil S A, Kaipparettu B A, Marti A A, Hayashi T, Zhu J J, Ajayan P M . Nano Letter, 2012,12:844. https://www.ncbi.nlm.nih.gov/pubmed/22216895

doi: 10.1021/nl2038979 pmid: 22216895
[25]
Moyano D F, Rotello V M . Langmuir, 2011,27:10376. https://www.ncbi.nlm.nih.gov/pubmed/21476507

doi: 10.1021/la2004535 pmid: 21476507
[26]
Wolfram J, Yang Y, Shen J, Moten A, Chen C, Shen H, Ferrari M, Zhao Y . Colloids and Surfaces B: Biointerfaces, 2014,124:17. https://www.ncbi.nlm.nih.gov/pubmed/24656615

doi: 10.1016/j.colsurfb.2014.02.035 pmid: 24656615
[27]
Sanchez V C, Jachak A, Hurt R H, Kane A B . Chemical Research in Toxicology, 2012,25:15. https://www.ncbi.nlm.nih.gov/pubmed/21954945

doi: 10.1021/tx200339h pmid: 21954945
[28]
Gan S, Zhong L, Han D, Niu L, Chi Q . Small, 2015,11:5814. https://www.ncbi.nlm.nih.gov/pubmed/26413807

doi: 10.1002/smll.201501819 pmid: 26413807
[29]
Zukiene R, Snitka V . Colloids and Surfaces B: Biointerfaces, 2015,135:316. https://www.ncbi.nlm.nih.gov/pubmed/26275837

doi: 10.1016/j.colsurfb.2015.07.054 pmid: 26275837
[30]
Zuo G, Zhou X, Huang Q, Fang H, Zhou R . Journal of Physical Chemistry C, 2011,115:23323. 0d808729-262b-45c5-833f-0286190bc130http://dx.doi.org/10.1021/jp208967t

doi: 10.1021/jp208967t
[31]
Nel A E, Mädler L, Velegol D, Xia T, Hoek E M V, Somasundaran P, Klaessig F, Castranova V, Thompson M . Nature Materals, 2009,8:543. https://www.ncbi.nlm.nih.gov/pubmed/19525947

doi: 10.1038/nmat2442 pmid: 19525947
[32]
Cheng C, Li S, Thomas A, Kotov N A, Haag R . Chemical Reviews, 2017,117:1826. https://www.ncbi.nlm.nih.gov/pubmed/28075573

doi: 10.1021/acs.chemrev.6b00520 pmid: 28075573
[33]
Chen X, Hai X, Wang J . Analytica Chimica Acta, 2016,922:1. https://www.ncbi.nlm.nih.gov/pubmed/27154826

doi: 10.1016/j.aca.2016.03.050 pmid: 27154826
[34]
Geim A K, Novoselov K S . Nature Materials, 2007,6:183. a9fd4cc9-802d-4a77-b3b4-78448a92f870https://www.ncbi.nlm.nih.gov/pubmed/17330084

doi: 10.1038/nmat1849 pmid: 17330084
[35]
Ahadian S, Estili M, Surya V J, Ramón-Azcón J, Liang X, Shiku H, Ramalingam M, Matsue T, Sakka Y, Bae H, Nakajima K, Kawazoec Y, Khademhosseini A . Nanoscale, 2015,7:6436. https://www.ncbi.nlm.nih.gov/pubmed/25779762

doi: 10.1039/c4nr07569b pmid: 25779762
[36]
Kuila T, Bose S, Mishra A K, Khanra P, Kim N H, Lee J H . Progress in Materials Science, 2012,57:1061.
[37]
Alava T, Mann J A, Théodore C C, Benitez J J, Dichtel W R, Parpia J M, Craighead H G . Analytical Chemistry, 2013,85:2754. https://www.ncbi.nlm.nih.gov/pubmed/23363062

doi: 10.1021/ac303268z pmid: 23363062
[38]
Luan B, Huynh T, Zhao L, Zhou R . ACS Nano, 2015,9:663. https://www.ncbi.nlm.nih.gov/pubmed/25494677

doi: 10.1021/nn506011j pmid: 25494677
[39]
Dong H, Zhu Z, Ju H, Yan F . Biosensors and Bioelectronics, 2012,33:228. https://www.ncbi.nlm.nih.gov/pubmed/22305443

doi: 10.1016/j.bios.2012.01.006 pmid: 22305443
[40]
Shan C, Yang H, Han D, Zhang Q, Ivaska A, Niu L . Langmuir, 2010,26:12030.
[41]
Liu Z, Jiang L, Galli F, Nederlof I, Olsthoorn R C L, Lamers G E M, Oosterkamp T H, Abrahams J P . Advanced Functional Materials, 2010,20:2857. http://doi.wiley.com/10.1002/adfm.201000761

doi: 10.1002/adfm.201000761
[42]
Lu F, Zhang S, Gao H, Jia H, Zheng L . ACS Applied Materials & Interfaces, 2012,4:3278. https://www.ncbi.nlm.nih.gov/pubmed/22692825

doi: 10.1021/am300634n pmid: 22692825
[43]
Huang C, Bai H, Li C, Shi G . Chemical Communications, 2011,47:4962. https://www.ncbi.nlm.nih.gov/pubmed/21431118

doi: 10.1039/c1cc10412h pmid: 21431118
[44]
Kiew S F, Kiew L V, Lee H, Imae T, Chung L Y . Journal of Controlled Release, 2016,226:217. https://www.ncbi.nlm.nih.gov/pubmed/26873333

doi: 10.1016/j.jconrel.2016.02.015 pmid: 26873333
[45]
Zhang Y, Wu C, Guo S, Zhang J . Nanotechnology Reviews, 2013,2:27.
[46]
Kuchlyan J, Kundu N, Banik D, Roy A, Sarkar N . Langmuir, 2015,31:13793. https://www.ncbi.nlm.nih.gov/pubmed/26646418

doi: 10.1021/acs.langmuir.5b03648 pmid: 26646418
[47]
Hu W, Peng C, Lv M, Li X, Zhang Y, Chen N, Fan C, Huang Q . ACS Nano, 2011,5:3693. https://www.ncbi.nlm.nih.gov/pubmed/21500856

doi: 10.1021/nn200021j pmid: 21500856
[48]
Ding Z, Ma H, Chen Y . RSC Advances, 2014,4:55290. c6a3cbe7-fcf8-468a-bc51-dd02403380f3http://dx.doi.org/10.1039/c4ra09613d

doi: 10.1039/c4ra09613d
[49]
Li H, Fierens K, Zhang Z, Vanparijs N, Schuijs M J, Steendam K V, Gracia N l F, Rycke R D, Beer T D, Beuckelaer A D, Koker S D, Deforce D, Albertazzi L, Grooten J, Lambrecht B N, Geest B G D . ACS Applied Materials & Interfaces, 2016,8:1147. https://www.ncbi.nlm.nih.gov/pubmed/26694764

doi: 10.1021/acsami.5b08963 pmid: 26694764
[50]
Novak M J, Pattammattel A, Koshmerl B, Puglia M, Williams C, Kumar C V . ACS Catalysis, 2015,6:339.
[51]
Zhang J, Zhang F, Yang H, Huang X, Liu H, Zhang J, Guo S . Langmuir, 2010,26:6083. https://www.ncbi.nlm.nih.gov/pubmed/20297789

doi: 10.1021/la904014z pmid: 20297789
[52]
Xu G, Chen X, Hu J, Yang P, Yang D, Wei L . Analyst, 2012,137:2757. fc99eeaf-2ed0-4770-b226-372b19aec64dhttp://dx.doi.org/10.1039/c2an35093a

doi: 10.1039/c2an35093a
[53]
Shen J, Shi M, Yan B, Ma H, Li N, Hu Y, Ye M . Colloids and Surfaces B: Biointerfaces, 2010,81:434. https://www.ncbi.nlm.nih.gov/pubmed/20728319

doi: 10.1016/j.colsurfb.2010.07.035 pmid: 20728319
[54]
Su R, Shi P, Zhu M, Hong F, Li D . Bioresource Technology, 2012,115:136. https://www.ncbi.nlm.nih.gov/pubmed/22244904

doi: 10.1016/j.biortech.2011.12.085 pmid: 22244904
[55]
Shao Q, Wu P, Xu X, Zhang H, Cai C . Physical Chemistry Chemical Physics, 2012,14:9076. https://www.ncbi.nlm.nih.gov/pubmed/22641400

doi: 10.1039/c2cp40654c pmid: 22641400
[56]
Jin L, Yang K, Yao K, Zhang S, Tao H, Lee S T, Liu Z, Peng R . ACS Nano, 2012,6:4864. https://www.ncbi.nlm.nih.gov/pubmed/22574614

doi: 10.1021/nn300217z pmid: 22574614
[57]
Yao K, Tan P, Luo Y, Feng L, Xu L, Liu Z, Li Y, Peng R . ACS Applied Materials & Interfaces, 2015,7:12270. https://www.ncbi.nlm.nih.gov/pubmed/25985836

doi: 10.1021/acsami.5b03118 pmid: 25985836
[58]
Sun X, Feng Z, Hou T, Li Y . ACS Applied Materials & Interfaces, 2014,6:7153. https://www.ncbi.nlm.nih.gov/pubmed/24801143

doi: 10.1021/am500167c pmid: 24801143
[59]
Li S, Mulloor J J, Wang L, Ji Y, Mulloor C J, Micic M, Orbulescu J, Leblanc R M . ACS Applied Materials & Interfaces, 2014,6:5704. https://www.ncbi.nlm.nih.gov/pubmed/24684375

doi: 10.1021/am500254e pmid: 24684375
[60]
Pattammattel A, Puglia M, Chakraborty S, Deshapriya I K, Dutta P K, Kumar C V . Langmuir, 2013,29:15643. https://www.ncbi.nlm.nih.gov/pubmed/24274382

doi: 10.1021/la404051c pmid: 24274382
[61]
De M, Chou S S, Dravid V P . Journal of the American Chemical Society, 2011,133:17524. https://www.ncbi.nlm.nih.gov/pubmed/21954932

doi: 10.1021/ja208427j pmid: 21954932
[62]
Lee W C, Lim C H Y X, Shi H, Tang L A L, Yu Wang, Lim C T, Loh K P . ACS Nano, 2011,5:7334. https://www.ncbi.nlm.nih.gov/pubmed/21793541

doi: 10.1021/nn202190c pmid: 21793541
[63]
Zhang C, Chen S, Alvarez P J J, Chen W . Carbon, 2015,94:531.
[64]
Zhang Y, Zhang J, Huang X, Zhou X, Wu H, Guo S . Small, 2012,8:154. https://www.ncbi.nlm.nih.gov/pubmed/22038754

doi: 10.1002/smll.201101695 pmid: 22038754
[65]
Patel S K S, Choi S H, Kang Y C, Lee J K . ACS Applied Materials & Interfaces, 2017,9:2213. https://www.ncbi.nlm.nih.gov/pubmed/28004579

doi: 10.1021/acsami.6b05165 pmid: 28004579
[66]
Vineh M B, Saboury A A, Poostchi A A, Rashidi A M, Parivar K . International Journal of Biological Macromolecules, 2018,106:1314. https://www.ncbi.nlm.nih.gov/pubmed/28851646

doi: 10.1016/j.ijbiomac.2017.08.133 pmid: 28851646
[67]
Kotchey G P, Allen B L, Vedala H, Yanamala N, Tyurina Y Y, Klein-Seetharaman J, Kagan V E, Kapralov A A, Star A . ACS Nano, 2011,5:2098. https://www.ncbi.nlm.nih.gov/pubmed/21344859

doi: 10.1021/nn103265h pmid: 21344859
[68]
Cheng C, Nie S, Li S, Peng H, Yang H, Ma L, Sun S, Zhao C . Journal of Materials Chemistry B, 2013,1:265. https://www.ncbi.nlm.nih.gov/pubmed/32260750

doi: 10.1039/c2tb00025c pmid: 32260750
[69]
Mu Q, Su G, Li L, Gilbertson B O, Yu L H, Zhang Q, Sun Y P, Yan B . ACS Applied Materials & Interfaces, 2012,4:2259. https://www.ncbi.nlm.nih.gov/pubmed/22409495

doi: 10.1021/am300253c pmid: 22409495
[70]
Yoon H H, Bhang S H, Kim T, Yu T, Hyeon T, Kim B S . Advanced Functional Materials, 2014,24:6455. 88c11d20-08b4-4cca-8312-de4c288b54aahttp://dx.doi.org/10.1002/adfm.201400793

doi: 10.1002/adfm.201400793
[71]
Bhattacharya K, Mukherjee S P, Gallud A, Burkert S C, Bistarelli S, Bellucci S, Bottini M, Star A, Fadeel B . Nanomedicine: Nanotechnology, Biology and Medicine, 2016,12:333.
[72]
Chen M L, He Y J, Chen X W, Wang J H . Bioconjugate Chemistry, 2013,24:387. https://www.ncbi.nlm.nih.gov/pubmed/23425155

doi: 10.1021/bc3004809 pmid: 23425155
[73]
Zheng X T, Than A, Ananthanaraya A, Kim D H, Chen P . ACS Nano, 2013,7:6278. https://www.ncbi.nlm.nih.gov/pubmed/23799995

doi: 10.1021/nn4023137 pmid: 23799995
[74]
Hu S H, Fang R H, Chen Y W, Liao B J, Chen I W, Chen S Y . Advanced Functional Materials, 2014,24:4144. https://www.ncbi.nlm.nih.gov/pubmed/22544807

doi: 10.1002/adma.201200197 pmid: 22544807
[75]
Singh D P, Herrera C E, Singh B, Singh S, Singh R K, Kumar R . Materials Science and Engineering: C, 2018,86:173. https://www.ncbi.nlm.nih.gov/pubmed/29525091

doi: 10.1016/j.msec.2018.01.004 pmid: 29525091
[76]
Liu Y, Yu D, Zeng C, Miao Z, Dai L . Langmuir, 2010,26:6158. https://www.ncbi.nlm.nih.gov/pubmed/20349968

doi: 10.1021/la100886x pmid: 20349968
[77]
Xu X, Huang J, Li J, Yan J, Qin J, Li Z . Chemical Communications, 2011,47:12385. https://www.ncbi.nlm.nih.gov/pubmed/22011887

doi: 10.1039/c1cc15735c pmid: 22011887
[78]
Guo C X, Ng S R, Khoo S Y, Zheng X, Chen P, Li C M . ACS Nano, 2012,6:6944. https://www.ncbi.nlm.nih.gov/pubmed/22793649

doi: 10.1021/nn301974u pmid: 22793649
[79]
Gully B S, Zou J, Cadby G, Passon D M, Iyer K S, Bond C S . Nanoscale, 2012,4:5321. https://www.ncbi.nlm.nih.gov/pubmed/22833181

doi: 10.1039/c2nr31150j pmid: 22833181
[80]
Sun Y, Dai H, Chen S, Xu M, Wang X, Zhang Y . Nanotoxicology, 2018,12:117. https://www.ncbi.nlm.nih.gov/pubmed/29338479

doi: 10.1080/17435390.2018.1425498 pmid: 29338479
[81]
Wang X, Sun X, He H, Yang H, Lao J, Song Y, Xia Y, Xu H, Zhang X, Huang F . Journal of Materials Chemistry B, 2015,3:3583. https://www.ncbi.nlm.nih.gov/pubmed/32262242

doi: 10.1039/c5tb00211g pmid: 32262242
[82]
Wu C, Wang C, Han T, Zhou X, Guo S, Zhang J . Advanced Healthcare Materials, 2013,2:1613. https://www.ncbi.nlm.nih.gov/pubmed/23703800

doi: 10.1002/adhm.201300066 pmid: 23703800
[83]
Wang X, Sun X, Lao J, He H, Cheng T, Wang M, Wang S, Huang F . Colloids and Surfaces B: Biointerfaces, 2014,122:638. https://www.ncbi.nlm.nih.gov/pubmed/25129696

doi: 10.1016/j.colsurfb.2014.07.043 pmid: 25129696
[84]
Shang W, Zhang X, Zhang M, Fan Z, Sun Y, Han M, Fan L . Nanoscale, 2014,6:5799. https://www.ncbi.nlm.nih.gov/pubmed/24740121

doi: 10.1039/c3nr06433f pmid: 24740121
[85]
Shang W, Nuffer J H, Dordick J S, Siegel R W . Nano Letter, 2007,7:1991.
[86]
Chong Y, Ma Y, Shen H, Tu X, Zhou X, Xu J, Dai J, Fan S, Zhang Z . Biomaterials, 2014,35:5041. https://www.ncbi.nlm.nih.gov/pubmed/24685264

doi: 10.1016/j.biomaterials.2014.03.021 pmid: 24685264
[87]
Li L, Wu G, Yang G, Peng J, Zhao J, Zhu J J . Nanoscale, 2013,5:4015. https://www.ncbi.nlm.nih.gov/pubmed/23579482

doi: 10.1039/c3nr33849e pmid: 23579482
[88]
Huang S, Qiu H, Lu S, Zhu F, Xiao Q . Journal of Hazardous Materials, 2015,285:18. https://www.ncbi.nlm.nih.gov/pubmed/25462867

doi: 10.1016/j.jhazmat.2014.11.019 pmid: 25462867
[1] Xinyue Wang, Kang Jin. Chemical Synthesis of Peptides and Proteins [J]. Progress in Chemistry, 2023, 35(4): 526-542.
[2] Yiming Chen, Huiying Li, Peng Ni, Yan Fang, Haiqing Liu, Yunxiang Weng. Catechol Hydrogel as Wet Tissue Adhesive [J]. Progress in Chemistry, 2023, 35(4): 560-576.
[3] Yong Zhang, Hui Zhang, Yi Zhang, Lei Gao, Jianchen Lu, Jinming Cai. Surface Synthesis of Heteroatoms-Doped Graphene Nanoribbons [J]. Progress in Chemistry, 2023, 35(1): 105-118.
[4] Yehjun Lim, Yanmei Li. Chemical Synthesis/Semisynthesis of Post-Translational Modified Tau Protein [J]. Progress in Chemistry, 2022, 34(8): 1645-1660.
[5] Muya Zhang, Jiaqi Liu, Wang Chen, Liqiang Wang, Jie Chen, Yi Liang. The Mechanism of Protein Condensation in Neurodegenerative Diseases [J]. Progress in Chemistry, 2022, 34(7): 1619-1625.
[6] Yizhou Yang, Bingquan Peng, Xiaoling Lei, Haiping Fang. Aromatic Rings in Ion Soultions: Two-Dimensional Crystals of Unconventional Stoichiometries and Ferromagnetism [J]. Progress in Chemistry, 2022, 34(7): 1524-1536.
[7] Yanyan Wang, Limin Chen, Siyang Li, Luhua Lai. How Intrinsically Disordered Proteins Modulate Biomolecular Condensates [J]. Progress in Chemistry, 2022, 34(7): 1610-1618.
[8] Yaoyu Qiao, Xuehui Zhang, Xiaozhu Zhao, Chao Li, Naipu He. Preparation and Application of Graphene/Metal-Organic Frameworks Composites [J]. Progress in Chemistry, 2022, 34(5): 1181-1190.
[9] Hongji Jiang, Meili Wang, Zhiwei Lu, Shanghui Ye, Xiaochen Dong. Graphene-Based Artificial Intelligence Flexible Sensors [J]. Progress in Chemistry, 2022, 34(5): 1166-1180.
[10] Hui Zhang, Wei Xiong, Jianchen Lu, Jinming Cai. Magnetic Properties and Engineering of Nanographene in Ultra-High Vacuum [J]. Progress in Chemistry, 2022, 34(3): 557-567.
[11] Chen Yaqiong, Song Hongdong, Wu Mao, Lu Yang, Guan Xiao. Application of Protein-Polysaccharide Complex System in the Delivery of Active Ingredients [J]. Progress in Chemistry, 2022, 34(10): 2267-2282.
[12] Li Geng, Li Jie, Jiang Hongyu, Liang Xiaozhong, Guo Kunpeng. Mechano-Responsive Luminescent Polymers [J]. Progress in Chemistry, 2022, 34(10): 2222-2238.
[13] Yang Linyan, Guo Yupeng, Li Zhengjia, Cen Jie, Yao Nan, Li Xiaonian. Modulation of Surface and Interface Properties of Cobalt-Based Fischer-Tropsch Synthesis Catalyst [J]. Progress in Chemistry, 2022, 34(10): 2254-2266.
[14] Zhao Jing, Wang Ziya, Mo Lixin, Meng Xiangyou, Li Luhai, Peng Zhengchun. Performance Enhancing Mechanism,Implementation and Practical Advantages of Microstructured Flexible Pressure Sensors [J]. Progress in Chemistry, 2022, 34(10): 2202-2221.
[15] Xiaoxiao Xiang, Xiaowen Tian, Huie Liu, Shuang Chen, Yanan Zhu, Yuqin Bo. Controlled Preparation of Graphene-Based Aerogel Beads [J]. Progress in Chemistry, 2021, 33(7): 1092-1099.