中文
Announcement
More
Progress in Chemistry 2018, Vol. 30 Issue (12): 1975-1991 DOI: 10.7536/PC180421 Previous Articles   Next Articles

• Review •

Investigation of the Mechanism of Cellular Uptake, Distribution and Toxicity of the DNA ‘Light-Switch’ Ru(Ⅱ) Polypyridyl Complexes

Benzhan Zhu1,2*, Xuan Xiao1,2, Xijuan Chao1,3, Miao Tang1,2, Rong Huang1,2, Jie Shao1,2   

  1. 1. State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China;
    3. MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDB01020300) and the National Natural Science Foundation of China(No. 21836005, 21577149, 21477139, 21621064, 21407163).
PDF ( 291 ) Cited
Export

EndNote

Ris

BibTeX

Since the discovery of DNA as the genetic material carrier, the work towards the elucidation of DNA structure within the cell nucleus has become of great importance. Fluorescent microscopy using luminescent and cell membrane permeable organic DNA-binding molecule as probes is a well-established technique towards achieving this goal. Barton's group discovered that the cationic ruthenium complex[Ru(bpy)2(dppz)]2+ (bpy=2,2'-bipyridine, dppz=dipyrido[3,2-a:2',3'-c] phenazine) functions as a molecular ‘light switch’ for DNA. Since then, there has been great attention drawn to the DNA binding properties of polypyridyl complexes of d6 octahedral metal ions, specifically towards the development of highly sensitive and structure-specific DNA probes.Until recently the research has been largely focused on the development of in vitro probes. However, few studies involving direct imaging of DNA in live cells with such systems have had very limited success, with poor membrane permeability still being ascribed as the major limiting factor. We found that not only the cellular, but more interestingly and importantly, the nuclear uptake of[Ru(bpy)2(dppz)]2+ is remarkably enhanced by pentachlorophenol and two other structurally unrelated biochemical agents. Furthermore, enantioselective imaging of live-cell nuclear DNA is observed between the two chiral forms of Ru(Ⅱ) complexes. The underlying molecular mechanism is found to be the formation of novel lipophilic and relatively stable ion-pair complexes. This represents the first report for an unprecedented new method for delivering the DNA ‘light-switching’ Ru(Ⅱ) complexes into the nucleus of living cells via ion-pairing, which could serve as a promising general live-cell delivering method for other potentially bio-medically but cell-impermeable metal complexes.
Contents
1 Introduction
2 Predominant interactions between metal chelates and DNA
2.1 Irreversible binding with DNA
2.2 Reversible binding with DNA
3 Binding with intracellular DNA
3.1 Cellular uptake mechanism
3.2 Potential luminescent probe for intracellular DNA
3.3 Hydrophobicity and cellular uptake regulation
3.4 Appending targeting group for cellular uptake promotion
3.5 Active transport of chelates
3.6 Enhanced cellular uptake of “DNA light switch” Ru(Ⅱ) complex via forming lipophilic ion-pairing complexes
4 Methods for assessing cellular uptake
4.1 Transmission electron microscope
4.2 Raman spectra
4.3 Molecular labeling methods with fluorophore
4.4 Methods for quantitative uptake measurements
5 Cytotoxicity
6 The medical value for Ru(Ⅱ) polypyridyl complexes

CLC Number: 

[1] Watson J D, Crick F H C. Nature, 1953, 171(4356):737.
[2] Saegner W. Principles of Nucleic Acid Structure. Springer-Verlag NY:Springer, 1984.
[3] Neidle S. Nucleic Acid Structure and Recognition.Oxford UK:Oxford University Press, 2002.
[4] Kumar C V, Barton J K, Turro N J. J. Am. Chem. Soc., 1985, 107(19):5518.
[5] Zeglis B M, Pierre V C, Barton J K. Chem. Commun., 2007, (44):4565.
[6] Zhang C X, Lippard S J. Curr. Opin. Chem. Biol., 2003, 7(4):481.
[7] Hartinger C G, Dyson P J. Chem. Soc. Rev., 2009, 38(2):391.
[8] Ott I, Gust R. Arch. Pharm., 2007, 340(3):117.
[9] Bruijnincx P C A, Sadler P J. Curr. Opin. Chem. Biol., 2008, 12(2):197.
[10] Jakupec M A, Galanski M, Arion V B, Hartinger C G, Keppler B K. Dalton Trans., 2008, (2):183.
[11] Dyson P J, Sava G. Dalton Trans., 2006, (16):1929.
[12] Allardyce C S, Dyson P J. Platin. Met. Rev., 2001, 45(2):62.
[13] Depenbrock H, Schmelcher S, Peter R, Keppler B K, Weirich G, Block T, Rastetter J, Hanauske A R. Eur. J. Cancer., 1997, 33(14):2404.
[14] Bergamo A, Gava B, Alessio E, Mestroni G, Serli B, Cocchietto M,Zorzet S, Sava G. Int. J. Oncol., 2002, 21(6):1331.
[15] Alessio E, Mestroni G, Bergamo A, Sava G. Curr. Top. Med. Chem., 2004, 4(15):1525.
[16] Hartinger C G, Zorbas-Seifried S,Jakupec M A,Kynast B, Zorbas H, Keppler B K. J. Inorg. Biochem., 2006, 100(5/6):891.
[17] Cohen G L, Bauer W R, Barton J K, Lippard S J. Science, 1979, 203(4384):1014.
[18] Mei H Y, Barton J K. Proc. Natl. Acad. Sci. U.S.A., 1988, 85(5):1339.
[19] Brabec V. Prog. Nucleic. Acid. Re., 2002, 71:1.
[20] Kastan M B, Bartek J. Nature, 2004, 432(7015):316.
[21] Gelasco A, Lippard S J. Biochemistry, 1998, 37(26):9230.
[22] Takahara P M, Rosenzweig A C, Frederick C A, Lippard S J. Nature, 1995, 377(6550):649.
[23] Clarke M J, Zhu F C, Frasca D R. Chem. Rev., 1999, 99(9):2511.
[24] Metcalfe C, Thomas J A. Chem. Soc. Rev., 2003, 32(4):215.
[25] Shi Y, Guo C L, Sun Y J, Liu Z L, Xu F G, Zhang Y, Wen Z W, Li Z A. Biomacromolecules, 2011, 12(3):797.
[26] Erkkila K E, Odom D T, Barton J K. Chem. Rev., 1999, 99(9):2777.
[27] Barton J K, Danishefsky A T, Goldberg J M. J. Am. Chem. Soc., 1984, 106(7):2172.
[28] Barton J K, Goldberg J M, Kumar C V, Turro N J. J. Am. Chem. Soc., 1986, 108(8):2081.
[29] Barton J K, Raphael A L. Proc. Natl. Acad. Sci. U.S.A., 1985, 82(19):6460.
[30] Hudson B P, Barton J K. J. Am. Chem. Soc., 1998, 120(28):6877.
[31] Franklin S J, Barton J K. Biochemistry, 1998, 37(46):16093.
[32] Kielkopf C L, Erkkila K E, Hudson B P, Barton J K, Rees D C. Nat. Struct. Biol., 2000, 7(2):117.
[33] Friedman A E, Chambron J C, Sauvage J P, Turro N J, Barton J K. J. Am. Chem. Soc., 1990, 112(12):4960.
[34] Hartshorn R M, Barton J K. J. Am. Chem. Soc., 1992, 114(15):5919.
[35] Amouyal E, Homsi A, Chambro J C. Sauvage J P. Dalton Trans., 1990, (6):1841.
[36] Turro C, Bossmann S H, Jenkins Y, Barton J K, Turro N J. J. Am. Chem. Soc., 1995, 117(35):9026.
[37] Satyanarayana S, Dabrowiak J C, Chaires J B. Biochemistry, 1993, 32(10):2573.
[38] Coggan D Z M, Haworth I S, Bates P J, Robinson A, Rodger A. Inorg. Chem., 1999, 38(20):4486.
[39] Foley F M, Keene F R, Collins J G. Dalton Trans., 2001, (20):2968.
[40] Pascu G I, Hotze A C, Sanchez-Cano C, Kariuki B M, Hannon M J. Angew. Chemie., 2007, 46(23):4374.
[41] Glasson C R K, Meehan G V, Clegg J K, Lindoy L F, Smith J A, Keene F R, Motti C. Chem. Eur. J., 2008, 14(34):10535.
[42] Gonzalez V, Wilson T, Kurihara I, Imai A, Thomas J A, Otsuki J. Chem. Commun., 2008, (16):1868.
[43] Lutterman D A, Chouai A, Liu Y, Sun Y, Stewart C D, Dunbar K R, Turro C. J. Am. Chem. Soc., 2008, 130(4):1163.
[44] Ghosh A, Das P, Gill M R, Kar P,Walker M G, Thomas J A, Das A. Chem. Eur. J., 2011, 17(7):2089.
[45] Hiort C, Lincoln P, Nordén B. J. Am. Chem. Soc., 1993, 115(9):3448.
[46] Yun B H, Kim J O, Lee B W, Lincoln P, Norden B, Kim J M, Kim S K. J. Phys. Chem. B, 2003, 107(36):9858.
[47] Biver T, Cavazza C, Secco F, Venturini M. J. Inorg. Biochem., 2007, 101(3):461.
[48] McKinley A W, Lincoln P, Tuite E M. Coordi. Chem. Rev., 2011, 255(21/22):2676.
[49] Keene F R, Smith J A, Collins J G. Coordi. Chem. Rev.,2009, 253(15/16):2021.
[50] Gill M R, Thomas J A. Chem. Soc. Rev., 2012, 41(8):3179.
[51] Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P. Molecular Biology of the Cell, 5th ed.NY:Garland Science, 2007.
[52] Barton J K, Basile L A, Danishefsky A, Alexandrescu A. Proc. Natl. Acad. Sci. U.S.A., 1984, 81(7):1961.
[53] Jackson B A, Barton J K. Biochemistry, 2000, 39(20):6176.
[54] Junicke H, Hart J R, Kisko J, Glebov O, Kirsch I R, Barton J K. Proc. Natl. Acad. Sci. U.S.A., 2003, 100(7):3737.
[55] Ruba E, Hart J R, Barton J K. Inorg. Chem., 2004, 43(15):4570.
[56] Lim M H, Song H, Olmon E D, Dervan E E, Barton J K. Inorg. Chem., 2009, 48(12):5392.
[57] Pierre V C, Kaiser J T, Barton J K. Proc. Natl. Acad. Sci. U.S.A., 2007, 104(2):429.
[58] Zeglis B M, Pierre V C, Kaiser J T, Barton J K. Biochemistry., 2009, 48(20):4247.
[59] Patterson B T, Collins J G, Foley F M, Keene F R. Dalton Trans., 2002, (23):4343.
[60] Smith J A, Collins J G, Patterson B T, Keene F R. Dalton Trans., 2004, (9):1277.
[61] Smith J A, Keene F R. Chem. Commun., 2006, (24):2583.
[62] Jimenez-Hernandez M E, Orellana G, Montero F, Portoles M T. Photochem. Photobiol., 2000, 72(1):28.
[63] New E J, Parker D, Smith D G, Walton J W. Curr. Opin. Chem. Biol., 2010, 14(2):238.
[64] Fernandez-Moreira V, Thorp-Greenwood F L, Coogan M P. Chem. Commun., 2010, 46(2):186.
[65] Zhao Q, Huang C H, Li F Y. Chem. Soc. Rev., 2011, 40(5):2508.
[66] Onfelt B, Gostring L, Lincoln P, Norden B, Onfelt A. Mutagenesis, 2002, 17(4):317.
[67] Puckett C A, Barton J K. J. Am. Chem. Soc., 2007, 129(1):46.
[68] Puckett C A, Barton J K. Biochemistry, 2008, 47(45):11711.
[69] Rajendiran V, Palaniandavar M, Periasamy V S, Akbarsha M A. J. Inorg. Biochem., 2010, 104(2):217.
[70] Amoroso A J, Coogan M P, Dunne J E, Fernandez-Moreira V, Hess J B, Hayes, A J, Lloyd D, Millet C, Pope S J A, Williams C. Chem. Commun., 2007, (29):3066.
[71] Lo K K W, Lee T K M, Lau J S Y, Poon W L, Cheng S H. Inorg. Chem., 2008, 47(1):200.
[72] Neugebauer U, Pellegrin Y, Devocelle M, Forster R J, Signac W, Morand N, Keyes T E. Chem. Commun., 2008, (42):5307.
[73] Brunner J, Barton J K. Biochemistry, 2006, 45(40):12295.
[74] Puckett C A, Barton J K. J. Am. Chem. Soc., 2009, 131(25):8738.
[75] Svensson F R, Matson M, Li M, Lincoln P. Biophys. Chem., 2010, 149(3):102.
[76] Matson M, Svensson F R, Norden B, Lincoln P. J. Phys. Chem. B, 2011, 115(7):1706.
[77] Svensson F R, Abrahamsson M, Stromberg N, Ewing A G, Lincoln P. J. Phys. Chem. Lett., 2011, 2(5):397.
[78] Puckett C A, Barton J K. Bioorg. Med. Chem., 2010, 18(10):3564.
[79] Gottschaldt M, Schubert U S, Rau S, Yano S, Vos J G, Kroll T, Clement J, Hilger I. ChemBioChem, 2010, 11(5):649.
[80] Gill M R, Garcia-Lara J, Foster S J, Smythe C, Battaglia G, Thomas J A. Nat. Chem., 2009, 1(8):662.
[81] Tian X H, Gill M R, Canton I, Thomas J A, Battaglia G. ChemBioChem, 2011, 12(4):548.
[82] Gill M R, Derrat H, Smythe C G W, Battaglia G, Thomas J A. ChemBioChem, 2011, 12(6):877.
[83] Zhu B Z, Chevion M. Chem-Biol. Interact., 2000, 129:249.
[84] Zhu B Z, Shechtman S, Chevion M. Chemosphere, 200145:463.
[85] Zhu B Z. Chem. Res. Toxicol., 2001, 14:222.
[86] Barbouti A, Doulias P T, Zhu B Z, Frei B, Galaris D. Free Radic. Res., 2005, 39:125.
[87] Levy S, Shechtman S, Zhu B Z, Stadtman E R, Stadler R, Chevion M. Environ. Toxicol. Chem., 2007, 26:218.
[88] 朱本占(Zhu B Z), 范瑞梅(Fan R M), 盛治国(Sheng Z G).科学通报(Chinese Science Bulletin), 2011, 54:1673.
[89] Sheng Z G, Li Y, Fan R M, Chao X J, Zhu B Z. Toxicol. Appl. Pharmacol., 2013, 266:335.
[90] Fan R M, Zhu B Z, Huang C P, Sheng Z G, Mao L, Li M X. Environ. Toxicol., 2016, 1964.
[91] Zhu B Z, Chao X J, Huang C H, Li Y. Chem. Sci., 2016, 7:4016.
[92] Shao B, Mao L, Qu N, Wang Y F, Gao H Y, Li F, Qin L, Shao J, Huang C H, Xu D, Xie L N, Shen C, Zhou X, Zhu B Z. Free. Radic. Biol. Med., 2017, 104:54.
[93] Hoenger A, McIntosh J R. Curr. Opin. Cell. Biol., 2009, 21(1):89.
[94] Van-Rijt S H, Mukherjee A, Pizarro A M, Sadler P J. J. Med. Chem., 2010, 53(2):840.
[95] Sava G, Zorzet S, Turrin C, Vita F, Soranzo M, Zabucchi G, Cocchietto M, Bergamo A, DiGiovine S, Pezzoni G, Sartor L, Garbisa S. Clin. Cancer. Res., 2003, 9(5):1898.
[96] Meister K, Niesel J, Schatzschneider U, Metzler-Nolte N, Schmidt D A, Havenith M. Angew. Chem. Int. Edit., 2010, 49(19):3310.
[97] Cosgrave L, Devocelle M, Forster R J, Keyes T E. Chem. Commun., 2010, 46(1):103.
[98] O'Connor N A, Stevens N, Samaroo D, Solomon M R, Marti A A, Dyer J, Vishwasrao H, Akins D L, Kandel E R, Turro N J. Chem. Commun., 2009, (19):2640.
[99] Schatzschneider U, Niesel J, Ott I, Gust R, Alborzinia H, Wolfl S. Chem. Med. Chem., 2008, 3(7):1104.
[100] Gianferrara T, Bratsos I, Alessio E. Dalton Trans., 2009, (37):7588.
[101] Fink S L, Cookson B T. Infect. Immun., 2005, 73(4):1907.
[102] Lei W H, Zhou Q X, Jiang G Y Zhang B W, Wang X S. Photoch. Photobio. Sci., 2011, 10(6):887.
[103] Foxon S P, Alamiry M A H, Walker M G, Meijer A J H M, Sazanovich I V, Weinstein J A, Thomas J A. J. Phys. Chem. A, 2009, 113(46):12754.
[104] Sun Y J, Joyce L E, Dickson N M, Turro C. Chem. Commun., 2010, 46(14):2426.
[105] Bolhuis A, Hand L, Marshall J E, Richards A D, Rodger A, Aldrich-Wright J. Eur. J. Pharm. Sci., 2011, 42(4):313.
[106] Tan C P, Lai S S, Wu S H, Hu S, Zhou L J, Chen Y, Wang M X, Zhu Y P, Lian W, Peng W L, Ji L N, Xu A L. J. Med. Chem., 2010, 53(21):7613.
[107] Tan C P, Wu S H, Lai S S, Wang M X, Chen Y, Zhou L J, Zhu Y P, Lian W, Peng W L, Ji L N, Xu A L. Dalton Trans., 2011, 40(34):8611.
[108] Pisani M J, Weber D K, Heimann K, Collins J G, Keene F R. Metallomics., 2010, 2(6):393.
[109] Pisani M J, Fromm P D, Mulyana Y, Clarke R J, Korner H, Heimann K, Collins J G, Keene F R. Chem. Med. Chem., 2011, 6(5):848.
[110] Li F F, Mulyana Y, Feterl M, Warner J M, Collins J G, Keene F R. Dalton Trans., 2011, 40(18):5032.
[111] Mulyana Y, Weber D K, Buck D P, Motti C A, Collins J G, Keene F R. Dalton Trans., 2011, 40(7):1510.
[112] Chen T F, Mei W J, Wong Y S, Liu J, Liu Y N, Xie H S, Zheng W J. MedChemComm, 2010, 1(1):73.
[113] Chen T F, Liu Y A, Zheng W J, Liu J, Wong Y S. Inorg. Chem., 2010, 49(14):6366.
[114] Ernst R J, Song H, Barton J K. J. Am. Chem. Soc., 2009, 131(6):2359.
[115] Aguirre J D, Angeles-Boza A M, Chouai A, Pellois J P, Turro C, Dunbar K R. J. Am. Chem. Soc., 2009, 131(32):11353.
[116] Joyce L E, Aguirre J D, Angeles-Boza A M, Chouai A, Fu P K L, Dunbar K R, Turro C. Inorg. Chem., 2010, 49(12):5371.
[117] Poon C T, Chan P S, Man C, Jiang F L, Wong R N S, Mak N K, Kwong D W J, Tsao S W, Wong W K. J. Inorg. Biochem., 2010, 104(1):62.
[118] Milkevitch M, Storrie H, Brauns E, Brewer K J, Shirley B W. Inorg. Chem., 1997, 36(20):4534.
[119] Van-Der-Schilden K, Garcia F, Kooijman H, Spek A L, Haasnoot J G, Reedijk J. Angew. Chem. Int. Edit., 2004, 43(42):5668.
[120] Petitjean A, Barton J K. J. Am. Chem. Soc., 2004, 126(45):14728.
[121] Ruggi A, Beekman C, Wasserberg D, Subramaniam V, Reinhoudt D N, van Leeuwen F W B, Velders A H. Chem. Eur. J., 2011, 17(2):464.
[122] Elmes R B P, Orange K N, Cloonan S M, Williams D C. J. Am. Chem. Soc., 2011, 133(40):15862.
[123] Murphy C J, Barton J K. Metallobiochemistry Part C, 1993, 226:576.
[124] Puckett C A, Ernst R J, Barton J K. Dalton Trans., 2010, 39(5):1159.
[125] Sun Y J, Collins S N, Joyce L E, Turro C. Inorg. Chem., 2010, 49(9):4257.
[126] Shi H J, Chen Y, Gao F, Yu H J, Li G Y, Chao H, Shi X F, Ji L N. J. Mol. Struct., 2008, 892(1/3):485.
[127] Cook N P, Kilpatrick K, Segatori L, Marti A A. J. Am. Chem. Soc., 2012, 134(51):20776.
[128] Cook N P, Torres V, Jain D, Marti A A. J. Am. Chem. Soc., 2011, 133(29):11121.
[129] Aliyan A, Kirby B, Pennington C, Martí A A. J. Am. Chem. Soc., 2016, 138:8686.
[130] Silva D E S, Cali M P, Pazin W M, Lima E C, Trevisan M T S, Venancio T, Miranda M A, Ito A S, Carlos R M. J. Med. Chem., 2016, 59:9215.
[131] Li G Y, Sun L L, Ji L N, Chao H. Dalton Trans., 2016, 45:13261.
[132] Boynton A N, Marcélis L, Barton J K. J.Am. Chem. Soc., 2016, 138:5020.
[133] Boynton A N, Marcelis L, McConnell A J, Barton J K. Inorg. Chem., 2017, 56:8381.
[134] Sun W, Li S Y, Häupler B, Liu J, Jin S B, Steffen W, Schubert U S, Butt B J, Liang X J, Wu S. Adv. Mater., 2017, 29:1.
[135] Shen J L, Kim H C, Wolfram J, Mu C F, Zhang W, Liu H R, Xie Y, Mai J H, Zhang H, Li Z, Guevara M, Mao Z W, Shen H F. Nano Letters, 2017, 17:2913.
[136] Gao M, Yu F, Lv C J, Choo J, Chen L X. Chem. Soc. Rev., 2017, 46:2237.
[1] Dongdong Zhang, Jingmin Liu, Yaoyao Liu, Meng Dang, Guozhen Fang, Shuo Wang. The Application of Nanoparticles in Drug Delivery [J]. Progress in Chemistry, 2018, 30(12): 1908-1919.
[2] Xiaofang Wang, Yin Hu, Qifa Pan, Ruilong Yang, Zhong Long, Kezhao Liu. Crystal Structure and Electronic Structure of Uranium Nitrides [J]. Progress in Chemistry, 2018, 30(12): 1803-1818.
[3] Chunxue Li, Yu Qiao, Xue Lin, Guangbo Che. Preparation of Quantum Dots@Metal-Organic Frameworks and Its Application in the Field of Photocatalytic Degradation [J]. Progress in Chemistry, 2018, 30(9): 1308-1316.
[4] Chuang Yao, Xi Zhang, Yongli Huang, Lei Li, Zengsheng Ma, Changqing Sun. Perspective: Structures and Properties of Liquid Water [J]. Progress in Chemistry, 2018, 30(8): 1242-1256.
[5] Xiuxiu Ni, He Ding, Jingshuang Zhang, Zhouliangzi Zeng, Peng Bai, Xianghai Guo*. Strategies for the Synthesis of b-Oriented MFI Zeolite Membranes and Their Applications [J]. Progress in Chemistry, 2018, 30(7): 976-988.
[6] Yushan Liu, Wei Li, Peng Wu, Shouxin Liu*. Preparation and Applications of Carbon Quantum Dots Prepared via Hydrothermal Carbonization Method [J]. Progress in Chemistry, 2018, 30(4): 349-364.
[7] Lu Jia, Jianzhong Ma, Dangge Gao, Bin Lv. Layered Double Hydroxides/Polymer Nanocomposites [J]. Progress in Chemistry, 2018, 30(2/3): 295-303.
[8] Tian Zhao*, Ming Dong, Yi Zhao, Yuejun Liu*. Preparation and Application of Nano-Sized Metal-Organic Frameworks [J]. Progress in Chemistry, 2017, 29(10): 1252-1259.
[9] Yaoyao Li, Jingmin Liu, Guozhen Fang, Dongdong Zhang, Qinghua Wang, Shuo Wang. Biosensor Detection and Imaging Based on Persistence Luminescence Nanoprobe [J]. Progress in Chemistry, 2017, 29(6): 667-682.
[10] Weina Fang, Shuang Lu, Lihua Wang, Chunhai Fan, Huajie Liu. Synthesis and Applications of Triangular Gold Nanoplates [J]. Progress in Chemistry, 2017, 29(5): 459-466.
[11] Yongyin Kang, Zhicheng Song, Peisheng Qiao, Xiangpeng Du, Fei Zhao. Research and Application of Photo-Luminescent Colloidal Quantum Dots [J]. Progress in Chemistry, 2017, 29(5): 467-475.
[12] Longjuan Kong, Hui Li*. Substrate Induced Atomic and Electronic Structures of Borophene, Silicene, and Germanene [J]. Progress in Chemistry, 2017, 29(4): 337-347.
[13] Xianyun Hu, Qingsheng Guo, Yuqian Liu, Qingjiang Sun, Tiehong Meng, Ruguo Zhang. Design Strategies and Applications of Quantum Dots Fluorescent Sensing [J]. Progress in Chemistry, 2017, 29(2/3): 300-317.
[14] Li Chao, Fan Meiqiang, Chen Haichao, Chen Da, Tian Guanglei, Shu Kangying. Thermodynamics and Kinetics Modifications on the Li-Mg-N-H Hydrogen Storage System [J]. Progress in Chemistry, 2016, 28(12): 1788-1797.
[15] Tang Zhijiao, Li Gongke*, Hu Yuling*. Advances in Preparation and Applications in Quantitative Analysis of Nitrogen-Doped Carbon Dots [J]. Progress in Chemistry, 2016, 28(10): 1455-1461.