中文
Announcement
More
Progress in Chemistry 2018, Vol. 30 Issue (12): 1930-1941 DOI: 10.7536/PC180408 Previous Articles   Next Articles

• Review •

The Control of Reduction Degree of Graphene Oxide

Liping Chen1, Rong Yang2*, Yinglin Yan1, Chaojiang Fan1, Mangmang Shi1, Yunhua Xu3   

  1. 1. School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, China;
    2. School of Science, Xi'an University of Technology, Xi'an 710054, China;
    3. Yulin University, Yulin 719000, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the International Science and Technology Cooperation Program of China(No. 2015DFR50350), the Key Research and Development Plan of Shaanxi Province(No. 2017GY-160), the Basic Research Plan of Natural Science Funded by Shaanxi Science and Technology Department(No. 2017JQ5055), and the National Natural Science Foundation of China(No. 51702256).
PDF ( 1019 ) Cited
Export

EndNote

Ris

BibTeX

Graphene, a two-dimensional material with monoatomic thickness, possesses a series of excellent properties, such as flexibility and electrical conductivity, which makes it widely applied in many fields. Oxidation-reduction method is the most commonly used and promising method for the preparation of graphene. However, large amounts of oxygen-containing functional groups, such as hydroxyl, epoxy, carboxyl and carbonyl groups, are formed on the planes and edges of the graphene during the oxidation process, which makes its conjugated structure destroyed, causing the excellent electrical conductivity decreased. Consequently, graphene oxide needs to be reduced by removing the oxygen-containing functional groups to recover conjugated structure. Interestingly, graphene-based materials need both a certain amount or types of oxygen-containing functional groups on graphene oxide which determines the characteristic of graphene oxide, chemical activity, hydrophilicity, band gap or defects, etc., and the characteristic of graphene, such as high electrical conductivity, for application in many fields. The control of reduction degree of graphene oxide, obtaining partially reduced graphene oxide, can not only make most use of the merits of oxygen-containing functional groups and ensure enough conductivity, but also obtain the partially reduced graphene oxide with determined types and amount of oxygen-containing functional groups on the requirements of the applications, realizing the diverse applications of graphene, such as adsorption, electroatalysis, photocatalysis, and sensor. The methods for controlling reduction degree of graphene oxide include chemical reduction method, thermal reduction (thermal annealing, hydrothermal and solvethermal reduction) and electrochemical reduction. Herein research progress on the controlling conditions of partially reduced graphene oxide, reduction mechanism and effect, comparison of those reduction methods as well as the applications of partially reduced graphene oxide are reviewed, and current challenges and research directions are also presented.
Contents
1 Introduction
2 Reduction degree of GO controlled by chemical reduction method
2.1 Types and concentration of reduction agent
2.2 Reduction temperature
2.3 Reaction medium and pH
2.4 Reduction time
3 Reduction degree of GO controlled by thermal reduction methods
3.1 Thermal annealing
3.2 Hydrothermal (solvothermal)
4 Reduction degree of GO controlled by electrochemical reduction method
4.1 Reduction potential
4.2 Reduction time
5 Reduction mechanism and effect
5.1 Reduction mechanism of chemical reduction
5.2 Reduction mechanism of thermal reduction
5.3 Reduction mechanism of electrochemical reduction
5.4 Comparison of different reduction methods
6 Applications of controlling reduction degree
7 Conclusion

CLC Number: 

[1] Singh V, Joung D, Zhai L, Das S, Khondaker S I, Seal S. Prog. Mater. Sci., 2011, 56(8):1178.
[2] Zhu Y W, Murali S, Cai W W, Li X S, Suk J W, Potts J R, Ruoff R S. Adv. Mater., 2010, 22(35):3906.
[3] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Science, 2004, 306(5696):666.
[4] Somani P R, Somani S P, Umeno M.Chem. Phys. Lett., 2006, 430(1/3):56.
[5] Parvez K, Wu Z, Li R, Liu X, Graf R, J. Am. Chem. Soc., 2014, 136:6083.
[6] William S, Hummers J R, Richard E O. J. Am. Chem. Soc., 1958, 1339.
[7] Lerf A, He H, Forster M, Klinowski J. J. Phys. Chem. B, 1998, 102(23):4477.
[8] Compton O C, Nguyen S T. Small, 2010, 6(6):711.
[9] Zu C X, Manthiram A. Adv. Energy Mater., 2013, 3:1008.
[10] Ji L W, Rao M M, Zheng H M, Zhang L, Li Y C, Duan W H, Guo J H, Cairns E J, Zhang Y G. J. Am. Chem. Soc., 2011, 133(46):18522.
[11] Wang Z Y, Dong Y F, Li H J, Zhao Z B, Wu H B, Hao C, Liu S H, Qiu J S, Lou(David) X W. Nat. Commun., 2014, 5:5002.
[12] Zhou X Y, Chen F, Yang J, Ma L L, Bai T, Long B, Liao Q C, Liu C W. J. Electroanal. Chem., 2015, 747:59.
[13] Jiang Y, Lu M N, Ling X T, Jiao Z, Chen L L, Chen L, Hu P F, Zhao B. J. Alloy. Compd., 2015, 645:509.
[14] Zhou G M, Yin L C, Wang D W, Li L, Pei S F, Gentle I R, Li F, Cheng H M. ACS Nano, 2013, 7(6):5367.
[15] Wang C, Wang X S, Wang Y J, Chen J T, Zhou H H, Huang Y H. Nano Energy, 2015, 11:678.
[16] 夏前芳(Xia Q F), 黄颖娟(Huang Y J), 杨雪(Yang X), 李在均(Li Z J). 化学学报(Acta Chimica Sinica), 2012, 70(11):1315.
[17] Zhang J L, Yang H J, Shen G X, Cheng P, Zhang J Y, Guo S W.Chem. Commun., 2010, 46(7):1112.
[18] Ambrosi A, Chua C K, Bonanni A, Pumera M. Chem. Mater., 2012, 24(12):2292.
[19] Huang H, Tang Y, Xu L, Tang S, Du Y. ACS Appl. Mater. Inter., 2014, 6(13):10248.
[20] Zhang X M, Li K Z, Li H J, Lu J H, Fu Q G, Chu Y H. Synthetic Met., 2014, 193:132.
[21] Tajul Arifin N F, Aziz M. Jurnal Teknologi, 2017, 79(1/2):1.
[22] Wan D Y, Yang C Y, Lin T Q, Tang Y F, Zhou M, Zhong Y J, Huang F Q, Lin J H. ACS Nano, 2012, 6(10):9068.
[23] He J L, Fang L. Curr. Appl. Phys., 2016, 16(9):1152.
[24] Dey R S, Hajra S, Sahu R K, Raj C R, Panigrahi M K. Chem. Commun., 2012, 48(12):1787.
[25] 徐超(Xu C), 员汝胜(Yuan R S), 汪信(Wang X). 新型炭材料(New Carbon Materials), 2014, 71(1):345.
[26] Pei S F, Cheng H M. Carbon, 2012, 50(9):3210.
[27] 常云珍(Chang Y Z), 韩高义(Han G Y), 肖尧明(Xiao Y M), 周海涵(Zhou H H), 董建华(Dong J H). 新型炭材料(New Carbon Materials), 2017, 32(1):21.
[28] Shin H J, Kim K K, Benayad A, Yoon S M, Park H K, Jung I S, Jin M H, Jeong H K, Kim J M, Choi J Y, Lee Y H. Adv. Funct. Mater., 2009, 19(12):1987.
[29] Yan S, He P G, Jia D C, Yang Z H, Duan X M, Wang S J, Zhou Y. Ceram. Int., 2016, 42(16):18181.
[30] Dong L L, Chen W G, Deng N, Zheng C H. Chem. Eng. J., 2016, 306:754.
[31] Wang R, Liu Y, Zhang Y Z, Wang L L, Yang G, Shen F, Deng S H, Zhang X H, He Y, Luo L. Ceram. Int., 2016, 42(16):19042.
[32] Yang J, Zhang E W, Li X F, Yu Y H, Qu J, Yu Z Z. ACS Appl. Mater. Inter., 2016, 8(3):2297.
[33] Vermisoglou E C, Giannakopoulou T, Romanos G, Boukos N, Psycharis V, Lei C, Lekakou C, Petridis D, Yu J G, Trapalis C. Appl. Surf. Sci., 2017, 392:244.
[34] Mathkar A, Tozier D, Cox P, Ong P, Galande C, Balakrishnan K, Reddy A L M, Ajayan P M. J. Phys. Chem. Lett., 2012, 3(8):986.
[35] Pei S F, Zhao J P, Du J H, Ren W C, Cheng H M. Carbon, 2010, 48(15):4466.
[36] Akhavan O. Carbon, 2011, 49(1):11.
[37] Akhavan O, Ghaderi E. J. Phys. Chem. C, 2009, 113(47):20214.
[38] Williams G, Seger B, Kamt P V. ACS Nano, 2008, 2(7):1487.
[39] Akhavan O. ACS Nano, 2010, 4(7):4174.
[40] Radich G, Krenselewski A L, Zhu J, Kamat P V. Chem. Mater., 2014, 26(15):4662.
[41] Dolbin A V, Khlistyuck M V, Esel'son V B, Gavrilko V G, Vinnikov N A, Basnukaeva R M, Maluenda I, Maser W K, Benito A M. Appl. Surf. Sci., 2016, 361:213.
[42] Nia Z K, Chen J Y, Tang B, Yuan B, Wang X G, Li J L. Carbon, 2017, 116:703.
[43] Singh M, Yadav A, Kumar S, Agarwal P. Appl. Surf. Sci., 2015, 326:236.
[44] Gao X F, Jang J, Nagase S. J. Phys. Chem. C, 2010, 114(2):832.
[45] Yamaguchi H, Ogawa S, Watanabe D, Hozumi H, Gao Y Q, Eda G, Mattevi C, Fujita T, Yoshigoe A, Ishizuka S, Adamska L, Yamada T, Dattelbaum A M, Gupta G, Doorn S K, Velizhanin K A, Teraoka Y, Chen M W, Htoon H, Chhowalla M, Mohite A D, Takakuwa Y. Phys. Status Solidi A, 2016, 213(9):2380.
[46] Lei Y, He Y, Fang C Y, Zhang Z. J. Mater. Sci.-Mater. El., 2017, 28(2):1750.
[47] Sasikala S P, Poulin P, Aymonier C. Adv. Mater., 2017, 29(22):1605473.
[48] Mei X F, Meng X Q, Wu F M. Physica E, 2015, 68:81.
[49] Tai G A, Zeng T, Li H X, Liu J S, Kong J Z, Lv F Y. Mater. Res. Express, 2014, 1(3):35605.
[50] Nethravathi C, Rajamathi M. Carbon, 2008, 46(14):1994.
[51] Bi H C, Yin K B, Xie X, Zhou Y L, Wan N, Xu F, Banhart F, Sun L T, Ruoff R S. Adv. Mater., 2012, 24(37):5124.
[52] Zheng X L, Peng Y S, Yang Y, Chen J L, Tian H W, Cui X Q, Zheng W T. J. Raman Spectrosc., 2017, 48(1):97.
[53] Guo H L, Wang X F, Qian Q Y, Wang F B, Xia X H. ACS Nano, 2009, 3(9):2653.
[54] Toh S Y, Loh K S, Kamarudin S K, Daud W R W. Chem. Eng. J., 2014, 251:422.
[55] Li W Y, Liu J G, Yan C W. Carbon, 2013, 55:313.
[56] Gao M M, Xu Y Y, Wang X H, Sang Y H, Wang S G. Electroanal., 2016, 28(6):1377.
[57] Feng X Y, Chen W F, Yan L F. RSC Adv., 2016, 6(83):80106.
[58] Dogan H Ö, Ekinci D, Demir V. Surf. Sci., 2013, 611:54.
[59] Fernández-Merino M J, Guardia L, Paredes J I, Villar-Rodil S, Solís-Fernandez P, Martínez-Alonso A, Tascón J M D. J. Phys. Chem. C, 2010, 114:6426.
[60] Abdullah M F, Zakaria R, Zein S H S. RSC Adv., 2014, 4(65):34510.
[61] Gao J, Liu F, Liu Y L, Ma N, Wang Z Q, Zhang X. Chem. Mater., 2010, 22(7):2213.
[62] Chua C K, Pumera M. Chem. Soc. Rev., 2014, 43(1):291.
[63] Chen J F, Shen L Y, Xiao Y H. J. Mater. Chem., 2010, 20(9):1722.
[64] Jin Y H, Huang S, Zhan M, Jia M Q, Hu D. Appl. Surf. Sci., 2013, 268:541.
[65] Thakur S, Karak N. Carbon, 2012, 50(14):5331.
[66] Toh S Y, Loh K S, Kamarudin S K, Daud W R W. Electrochim. Acta, 2016, 199:194.
[67] Zhou M, Wang Y L, Zhai Y M, Zhai J F, Ren W, Wang F, Dong S J. Chem.-Eur. J., 2009, 15:6116.
[68] Raj M A, John S A. J. Phys. Chem. C, 2013, 117(8):4326.
[69] Becerril H A, Mao J, Liu Z F, Stoltenberg R M, Bao Z N, Chen Y S. ACS Nano, 2008, 2(3):463.
[70] Li S W, Wang M, Lian Y F. Sci. China Chem., 2016, 59(4):405.
[71] Ambrosi A, Bonanni A, Sofer Z, Cross J S, Pumera M. Chem.-Eur. J., 2011, 17(38):10763.
[72] Li D, Müller M B, Gilje S, Kaner R B, Wallace G G. Nat. Nanotechnol., 2008, 3(2):101.
[73] Bagri A, Mattevi C, Acik M, Chabal Y J, Chhowalla M, Shenoy V B. Nat. Chem., 2010, 2(7):581.
[74] Ye S B, Feng J C, Wu P Y. ACS Appl. Mater. Inter., 2013, 5(15):7122.
[75] Gao W, Alemany L B, Ci L J, Ajayan P M. Nat. Chem., 2009, 1(5):403.
[76] 侯若男(Hou R N), 彭同江(Peng T J), 孙红娟(Sun H J), 陈军刚(Chen J G). 人工晶体学报(Journal of Synthetic Crystals), 2014, 23(5):418.
[77] Boukhvalov D W, Katsnelson M I. J. Am. Chem. Soc., 2008, 130:10697.
[78] Li Z Y, Zhang W H, Luo Y, Yang J L, Hou J G. J. Am. Chem. Soc., 2009, 131(18):6320.
[79] Sadhukhan S, Ghosh T K, Rana D, Roy I, Bhattacharyya A, Sarkar G, Chakraborty M, Chattopadhyay D. Mater. Res. Bull., 2016, 79:41.
[80] Zhao X, Dong H W, Xiao Y, Hu H, Cai Y J, Liang Y R, Sun L Y, Liu Y L, Zheng M T. Electrochim. Acta, 2016, 218:32.
[81] Yang J, Gunasekaran S. Carbon, 2013, 51(1):36.
[82] Liu X, Qi X, Zhang Z, Ren L, Hao G L, Liu Y D, Wang Y, Huang K, Wei X L, Li J, Huang Z Y, Zhong J X. RSC Adv., 2014, 4(26):13673.
[83] Dolbin A V, Esel'son V B, Gavrilko V G, Manzhelii V G, Vinnikov N A, Basnukaeva R M, Danchuk V V, Mysko N S. Low Temp. Phys., 2013, 39(12):1397.
[84] Wan W C, Zhang F, Yu S, Zhan R Y, Zhou Y. New J. Chem., 2016, 40(4):3040.
[85] De Camargo M N L, Santhiago M, Maroneze C M, Silva C C C, Timm R A, Kubota L T. Electrochim. Acta, 2016, 197:194.
[86] Zhang Z P, Yan J, Jin H Z, Yin J G. Electrochim. Acta, 2014, 139:232.
[87] Kavan L, Yum J H, Graetzel M. ACS Appl. Mater Inter., 2012, 4(12):6999.
[88] Novoselov K. Nat. Mater., 2007, 6(10):720.
[89] Ambrosi A, Pumera M. Chem.-Eur. J., 2013, 19(15):4748.
[90] Landi G, Sorrentino A, Iannace S, Neitzert H C. Nanotechnology, 2017, 28(5):054005.
[1] Yong Zhang, Hui Zhang, Yi Zhang, Lei Gao, Jianchen Lu, Jinming Cai. Surface Synthesis of Heteroatoms-Doped Graphene Nanoribbons [J]. Progress in Chemistry, 2023, 35(1): 105-118.
[2] Yaoyu Qiao, Xuehui Zhang, Xiaozhu Zhao, Chao Li, Naipu He. Preparation and Application of Graphene/Metal-Organic Frameworks Composites [J]. Progress in Chemistry, 2022, 34(5): 1181-1190.
[3] Hongji Jiang, Meili Wang, Zhiwei Lu, Shanghui Ye, Xiaochen Dong. Graphene-Based Artificial Intelligence Flexible Sensors [J]. Progress in Chemistry, 2022, 34(5): 1166-1180.
[4] Hui Zhang, Wei Xiong, Jianchen Lu, Jinming Cai. Magnetic Properties and Engineering of Nanographene in Ultra-High Vacuum [J]. Progress in Chemistry, 2022, 34(3): 557-567.
[5] Xiaoxiao Xiang, Xiaowen Tian, Huie Liu, Shuang Chen, Yanan Zhu, Yuqin Bo. Controlled Preparation of Graphene-Based Aerogel Beads [J]. Progress in Chemistry, 2021, 33(7): 1092-1099.
[6] Lei Wu, Lihui Liu, Shufen Chen. Flexible Organic Light-Emitting Diodes Using Carbon-Based Transparent Electrodes [J]. Progress in Chemistry, 2021, 33(5): 802-817.
[7] Binbin Zhu, Xiaohui Zheng, Guang Yang, Xu Zeng, Wei Qiu, Bin Xu. Mechanical Property Regulation of Graphene Oxide Separation Membranes [J]. Progress in Chemistry, 2021, 33(4): 670-677.
[8] Suye Lv, Liang Zou, Shouliang Guan, Hongbian Li. Application of Graphene in Neural Activity Recording [J]. Progress in Chemistry, 2021, 33(4): 568-580.
[9] Xiansheng Luo, Hanlin Deng, Jiangying Zhao, Zhihua Li, Chunpeng Chai, Muhua Huang. Synthesis and Application of Holey Nitrogen-Doped Graphene Material(C2N) [J]. Progress in Chemistry, 2021, 33(3): 355-367.
[10] Jianlei Qi, Qinqin Xu, Jianfei Sun, Dan Zhou, Jianzhong Yin. Synthesis, Characterization and Analysis of Graphene-Supported Single-Atom Catalysts [J]. Progress in Chemistry, 2020, 32(5): 505-518.
[11] Le Gong, Rong Yang, Rui Liu, Liping Chen, Yinglin Yan, Zufei Feng. Application of Graphene Quantum Dots in Energy Storage Devices [J]. Progress in Chemistry, 2019, 31(7): 1020-1030.
[12] Jie Liu, Yuan Zeng, Jun Zhang, Haijun Zhang, Jianghao Liu. Preparation, Structures and Properties of Three-Dimensional Graphene-Based Materials [J]. Progress in Chemistry, 2019, 31(5): 667-680.
[13] Aobo Geng, Qiang Zhong, Changtong Mei, Linjie Wang, Lijie Xu, Lu Gan. Applications of Wet-Functionalized Graphene in Rubber Composites [J]. Progress in Chemistry, 2019, 31(5): 738-751.
[14] Xiaojuan Wang, Zhenzhen Liu, Qi Chen, Xiaoqiang Wang, Fang Huang. Interactions between Graphene Materials and Proteins [J]. Progress in Chemistry, 2019, 31(2/3): 236-244.
[15] Changyuan Bao, Jiajun Han*, Jinning Cheng, Ruitao Zhang. Electrode Materials Blended with Graphene/Polyaniline for Supercapacitor [J]. Progress in Chemistry, 2018, 30(9): 1349-1363.