中文
Announcement
More
Progress in Chemistry 2018, Vol. 30 Issue (11): 1634-1645 DOI: 10.7536/PC180335 Previous Articles   Next Articles

• Review •

Synthesis of Poly(Ester Amide)

Han Gao1, Jun Xu3, Xin Hu2*, Ning Zhu1*, Kai Guo1*   

  1. 1. College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Material Chemistry Engineering, Nanjing Tech University, Nanjing 211800, China;
    2. College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211800, China;
    3. Caprolactam Division, SINOPEC Baling Company, Yueyang 414000, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No. 21878145, 21504039, 21522604, U1463201) and the Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture(No. XTD1823, XTD1821, XTB1802).
PDF ( 1555 ) Cited
Export

EndNote

Ris

BibTeX

Poly(ester amide)(PEA) is a class of functional polymers with both amide and ester linkages in the polymer main chains. Due to the outstanding biodegradability, biocompatibility and mechanical property, PEA has broad applications in drug delivery, tissue engineering and thermoplastic elastomer. Polycondensation is the original synthetic method to PEA. Recently, remarkable achievements have been made in synthesis of PEA via ring-opening polymerization(ROP). This review summarizes the progress in ROP of cyclic monomers, ring-opening copolymerization(ROCP) of cyclic monomers and ROCP of cyclic/linear momomers. Moreover, multicomponent polymerization(MCP) is highlighted as a novel synthetic strategy to prepare PEA. The challenge and outlook of PEA are also discussed.
Contents
1 Introduction
2 Synthesis of poly(ester amide)s by ring-opening polymerization
2.1 Homo-polymerization of cyclic monomer
2.2 Co-polymerization of cyclic monomer
2.3 Co-Polymerization of cyclic monomer and linear monomer
3 Synthesis of poly(ester amide)s by multicomponent polymerization
4 Conclusion

CLC Number: 

[1] Winnacker M, Rieger B. Macromol. Rapid. Commun., 2016, 37:1391.
[2] Nie J, Liu X, Yan Y, Zhang H. J. Mater. Chem. C, 2017, 5:10391.
[3] Bednarek M. Prog. Polym. Sci., 2016, 58:27.
[4] Winnacker M, Rieger B. Polym. Chem., 2016, 7:7039.
[5] Natarajan J, Madras G, Chatterjee K. ACS Appl. Mater. Inter., 2017, 9:28281.
[6] Carothers W H, Dorough G L, Natta F J V. J. Am. Chem. Soc., 1932, 54:761.
[7] Dr P D. Angew. Chem. Int. Edit., 2004, 43:1078.
[8] Rizzarelli P, Cirica M, Pastorelli G, Puglisi C, Valenti G. Polym. Degrad. Stabil., 2015, 121:90.
[9] Ghosal K, Latha M S, Thomas S. Eur. Polym. J., 2014, 60:58.
[10] Bedoui F, Murthy N S, Kohn J. Macromolecules, 2017, 50.
[11] Fonseca A C, Gil M H, Simões P N. Prog. Polym. Sci., 2014, 39:1291.
[12] Rodríguez-Galán A, Franco L, Puiggali J. Biodegradable Poly(Ester Amide)s:Synthesis and Applications. 2nd ed. NY:Nova Science, 2011. 207.
[13] Sun H, Meng F, Dias A A, Hendriks M, Feijen J, Zhong Z. Biomacromolecules, 2011, 12:1937.
[14] Khan W, Muthupandian S, Farah S, Kumar N, Domb A J. Macromol. Biosci., 2011, 11:1625.
[15] Hu X, Zhu N, Fang Z, Guo K. React. Chem. Eng., 2017, 2:20.
[16] Höcker H, Keul H. Adv. Mater., 1994, 6:21.
[17] Okada M. Adv. Polym. Sci., 1992, 102:1.
[18] 汪羽翎(Wang Y L), 李武松(Li W S), 刘聪聪(Liu C C), 黄卫(Huang W), 颜德岳(Yan D Y), 康宏强(Kang H Q). 高分子学报(Acta polymerica Sinica), 2017, 1304.
[19] 周群华(Zhou Q H), 杨立群(Yang L Q), 张巍(Zhang W), 李淼(Li M). 中国组织工程研究(Journal of Clinical Rehabilitative Tissue Engineering Research), 2016, 20:4524.
[20] Nissen D, Gilon C, Goodman M. Macromol. Chem. Phys., 1975, 1:23.
[21] Peng X, Behl M, Zhang P, Mazurek-Budzyńska M, Razzaq M Y, Lendlein A. Polymer, 2016, 105:318.
[22] Chisholm M H, Galucci J, Krempner C, Wiggenhorn C. Dalton Trans., 2006, 6:846.
[23] RodriguezGalan, Alfonso, Franco, Lourdes, Puiggali, Jordi. Polymers, 2010, 3:65.
[24] Shoda S, Uyama H, Kadokawa J, Kimura S, Kobayashi S. Chem. Rev., 2016, 116:2307.
[25] Feng Y K, Knufermann J, Klee D, Hocker H. Macromol. Chem. Phys., 1999, 200:1506.
[26] Feng Y, Lu J, Behl M, Lendlein A. Macromol. Biosci., 2010, 10:1008.
[27] Feng Y, Klee D, Keul H, Höcker H. Macromol. Chem. Phys., 2000, 201:2670.
[28] Fey T, Keul H, Höcker H. Macromol. Chem. Phys., 2003, 204.
[29] Fey T, Keul H, Höcker H. Macromol. Symp., 2004, 215:307.
[30] Jakisch L, Böhme F, Komber H, Pompe G. Macromol. Rapid. Commun., 1999, 20:256.
[31] Feng Y, Lu W, Ren X, Liu W, Guo M, Ullah I, Zhang W. Polymers, 2016, 8:13.
[32] Ren X, Feng Y, Guo J, Wang H, Li Q, Yang J, Hao X, Lv J, Ma N, Li W. Chem. Soc. Rev., 2015, 44:5745.
[33] Hao X, Li Q, Lv J, Yu L, Ren X, Zhang L, Feng Y, Zhang W. ACS Appl. Mater. Inter., 2015, 7:12128.
[34] Rainbolt E A, Washington K E, Biewer M C, Stefan M C. Polym. Chem., 2015, 6:2369.
[35] Toncheva-Moncheva N, Jerome R, Mateva R. Polym. Degrad. Stabil., 2016, 123:170.
[36] Komoto H. Macromol. Chem., 1968, 115:33.
[37] Chromcová D, Baslerová L, Roda J, Brozek J. Eur. Polym. J., 2008, 44:1733.
[38] 刘继延(Liu J Y), 张黎明(Zhang L M). 化学进展(Progress in Chemistry), 2007, 19:350.
[39] 许茸(Xu R), 陈春霞(Chen C X). 化学进展(Progress in Chemistry), 2012, 24:1519.
[40] Sanchez-Sanchez A, Basterretxea A, Mantione D, Etxeberria A, Elizetxea C, de la Calle A, García-Arrieta S, Sardon H, Mecerreyes D. J. Polym. Sci. Part A:Polym. Chem., 2016, 54:2394.
[41] Michell R M, Müller A J, Castelletto V, Hamley I, Deshayes G l, Dubois P. Macromolecules, 2009, 42:6671.
[42] Deshayes G, Delcourt C, Verbruggen I, Trouillet-Fonti L, Touraud F, Fleury E, Degée P, Destarac M, Willem R, Dubois P. Eur. Polym. J., 2011, 47:98.
[43] Wang Y, Wei D, Zhang W. ChemCatChem, 2017, 10.
[44] Yang W, Wei D, Tang M. J. Org. Chem., 2017, 82:13043.
[45] Zhang G, Xu W, Liu J, Das D K, Yang S, Perveen S, Zhang H, Li X, Fang X. Chem. Commun., 2017, 53:13336.
[46] 郭凯(Guo K), 弓桦(Gong H), 朱宁(Zhu N), 胡欣(Hu X), 方正(Fang Z), 王海鑫(Wang H X), 曾文波(Zeng W B). ZL201610219405.3, 2016.
[47] Kredatusová J, Beneš H, Livi S, Pop-Georgievski O, Ecorchard P, Abbrent S, Pavlova E, Bogdal D. Polymer, 2016, 100:86.
[48] 于翠萍(Yu C P), 李希(Li X), 沈之荃(Shen Z Q). 化学进展(Progress in Chemistry), 2007, 19:136.
[49] Li X, Chen C, Wu J. Molecules, 2018, 23:189.
[50] Mezzasalma L, Dove A P, Coulembier O. Eur. Polym. J., 2017.
[51] Basterretxea A, Gabirondo E, Sanchez-Sanchez A, Etxeberria A, Coulembier O, Mecerreyes D, Sardon H. Eur. Polym. J., 2017, 95:650.
[52] Ottou W N, Sardon H, Mecerreyes D, Vignolle J, Taton D. Prog. Polym. Sci., 2016, 56:64.
[53] Fernández J, Etxeberria A, Sarasua J R. Polym. Degrad. Stabil., 2015, 112:104.
[54] Kronek J, Lustoň J, Kroneková Z, Paulovi Dcová E, Farkaš P, Petren Dcíková N, Paulovi Dcová L, Janigová I. J. Mater. Sci. Mater. M, 2010, 21:879.
[55] Li C G, Li S Q, Zhao J B, Zhang Z Y, Zhang J Y, Yang W T. Polym. Eng. Sci., 2015, 55:763.
[56] Kempe K. Macromol. Chem. Phys., 2017, 218:1700021.
[57] Culbertson B M. Prog. Polym. Sci., 2002, 27:579.
[58] (a)Sano Y, Arita K, Masuda I. US 4474942, 1984.; (b)Sano Y. J. Polym. Sci. Part A:Polym. Chem., 1989, 27:2749.
[59] Rao B S, Palanisamy A. Prog. Org. Coat., 2012, 74:427.
[60] Masuda I, Arita K, Sano Y. US4600766, 1986.
[61] Sano Y, Arita K, Masuda I, Hirono T, Nakamura Y. J. Netw. Polym. Jpn., 1986, 7:131.
[62] Néry L, Lefebvre H, Fradet A. Macromol. Chem. Phys., 2003, 204:1755.
[63] Seppälä J V, Helminen A O, Korhonen H. Macromol. Biosci., 2004, 4:208.
[64] Tarvainen T, Karjalainen T, Malin M, Peräkorpi K, Tuominen J, Seppälä J, Järvinen K. Eur. J. Pharm. Sci., 2002, 16:323.
[65] Rabnawaz M, Wyman I, Auras R, Cheng S. Green. Chem., 2017, 19.
[66] 李红微(Li H W), 陈梦羽(Chen M Y), 赵京波(Zhao J B), 杨万泰(Yang W T). 北京化工大学学报(自然科学版)(Journal of Beijing University of Chemical Technology(Nature Science Edition)), 2011, 38:89.
[67] Lustoň J, Kronek J, Janigová I. J. Macromol. Sci. A, 2010, 47:716.
[68] Lustoň J, Kronek J, Kleinová A, Janigová I, Valentová H, Nedbal J. J. Polym. Sci. Part A:Polym. Chem., 2012, 50:3936.
[69] Wilsens C H R M, Wullems N J M, Gubbels E, Yao Y, Rastogi S, Noordover B A J. Polym. Chem., 2015, 6:2707.
[70] Wilsens C H R M, Deshmukh Y S, Noordover B A J, Rastogi S. Macromolecules, 2014, 47:6196.
[71] Çakir S, Eriksson M, Martinelle M, Koning C E. Eur. Polym. J., 2016, 79:13.
[72] Bakkali-Hassani C, Tunc D, Roos K, Planes M, Lecomte P, Carlotti S. Macromolecules, 2016, 50:175.
[73] Qian Z, Li S, He Y, Li C, Liu X B. Polym. Degrad. Stabil., 2003, 81:279.
[74] He Y, Du Y R, Liu X B. Adv. Mater. Res., 2011, 287/290:1538.
[75] Solleder S C. Angew. Chem. Int. Edit., 2014, 53:711.
[76] Badi N. Chem. Soc. Rev., 2009, 38:3383.
[77] Ouchi M, Badi N, Lutz J F, Sawamoto M. Nat. Chem., 2011, 3:917.
[78] Robert C, De M F, Thomas C M. Nat. Commun., 2011, 2:586.
[79] Lutz J F. Macromol. Rapid. Commun., 2017, 38:1700582.
[80] Urnauer S, Morys S, Levacic A K, Müller A M, Schug C, Schmohl K A, Schwenk N, Zach C, Carlsen J, Bartenstein P. Mol. Ther., 2016, 24:1395.
[81] Li J, Stayshich R M, Meyer T Y. J. Am. Chem. Soc., 2011, 133:6910.
[82] Chen C L, Zuckermann R N, Deyoreo J J. ACS Nano, 2016, 10:5314.
[83] Passerini M. Gazz. Chim. Ital., 1921, 51:126.
[84] Deng X X, Li L, Li Z L, Lv A, Du F S, Li Z C. ACS Macro. Lett., 2012, 1:1300.
[85] Lv A, Deng X X, Li L, Li Z L, Wang Y Z, Du F S, Li Z C. Polym. Chem., 2013, 4:3659.
[86] Kan X W, Deng X X, Du F S, Li Z C. Macromol. Chem. Phys., 2014, 215:2221.
[87] Li L, Deng X X, Li Z L, Du F S, Li Z C. Macromolecules, 2014, 47:4660.
[88] Kim K S, Lee D, Song C G, Kang P M. Nanomedicine, 2015, 10:2709.
[89] Tapeinos C, Pandit A. Adv. Mater., 2016, 28:5553.
[90] Cui Y, Zhang M, Du F S, Li Z C. ACS Macro. Lett., 2016, 6:11.
[91] Kamaly N, Yameen B, Wu J, Farokhzad O C. Chem. Rev., 2016, 116:2602.
[92] Zhang Y, Yin Q, Yin L, Ma L, Tang L, Cheng P D J. Angew. Chem. Int. Edit., 2013, 125:6563.
[1] Guofu Qin, Yihuan Liu, Fan Yin, Xin Hu, Ning Zhu, Kai Guo. Grafting Modification of Lignin via Ring-Opening Polymerization [J]. Progress in Chemistry, 2020, 32(10): 1547-1556.
[2] Fanfan Du, Ying Zheng, Guorong Shan, Yongzhong Bao, Suyun Jie*, Pengju Pan*. Hydrogen Bonding-Based Non-Metallic Organocatalysts for Ring-Opening Polymerization of Lactones [J]. Progress in Chemistry, 2018, 30(6): 710-718.
[3] Xu Rong, Chen Chunxia. Ring-Opening Polymerization of ε-Caprolactone Catalyzed by Organocatalyst [J]. Progress in Chemistry, 2012, 24(08): 1519-1525.
[4] Li Guang, Bai Ruke. Synthesis of Azide Polymers [J]. Progress in Chemistry, 2011, 23(8): 1692-1699.
[5] Li Qizheng, Zhang Guoyi, Yuan Cong, Wei Liuhe, Ma Zhi. Synthesis and Application of Polyolefin/Polyester (Polyether) Copolymers [J]. Progress in Chemistry, 2011, 23(6): 1174-1180.
[6] . Synthesis of Well-Defined Polymers via Mechanism Transformation between Living Ring-Opening Polymerization and Controlled Free Radical Polymerization [J]. Progress in Chemistry, 2010, 22(09): 1799-1807.
[7] Zhang Zhiguo**,Yin Hong. Ring-Opening Polymerization Kinetics of Ethylene Oxide and Propylene Oxide [J]. Progress in Chemistry, 2007, 19(04): 575-582.
[8] Yu Cuiping 1**,Li Xi1|Shen Zhiquan2. Ring-Opening Homopolymerization of Lactides [J]. Progress in Chemistry, 2007, 19(01): 136-144.
[9] Zhang Zhiguo**,Yin Hong. Ring-Opening Polymerization of Ethylene Oxide and Propylene Oxide [J]. Progress in Chemistry, 2007, 19(01): 145-152.
[10] Chen Tao,Wang Li**,Wang Jianjun,Jiang Guohua. Preparation and Self-Assembly of Poly(ferrocenophane) Block Copolymer [J]. Progress in Chemistry, 2004, 16(05): 797-.
[11] Wang Xuejie,Wang Li**. The Development of Synthesis and Property of Polyferrocenophane with High Molecular Weight Prepared by Ring-opening Polymerization (ROP) [J]. Progress in Chemistry, 2002, 14(06): 486-.
Viewed
Full text


Abstract

Synthesis of Poly(Ester Amide)