中文
Announcement
More
Progress in Chemistry 2018, Vol. 30 Issue (5): 692-702 DOI: 10.7536/PC180324 Previous Articles   

• Review •

Biosynthetic Mechanisms of Alkaloids from Actinomycetes

Tingting Huang, Zihua Zhou, Qi Liu, Xiaozheng Wang, Wenli Guo, Shuangjun Lin*   

  1. State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21632007).
PDF ( 1081 ) Cited
Export

EndNote

Ris

BibTeX

Alkaloid natural products generally have complex and diverse chemical structures and exhibit a wide range of biological activities, and therefore are of great interest to biologists, chemists, and pharmacists. Apart from plants, microorganisms have been identified as the most important source of natural alkaloids. Microorganisms, especially actinomycetes, produce many secondary metabolites including alkaloids. Studies on the biosynthesis of skeletons and pharmacophores of alkaloids produced by actinomycetes not only enrich our understanding of the biosynthetic mechanism of natural products, but also provide important genetic elements in order to generate these compounds or the derivatives by designed and man-made synthetic pathways in heterologous host using synthetic biology. This review provides a summary of recent research advances in elucidating the biosynthesis of alkaloids from actinomycetes. The detailed biochemical mechanisms have been summarized in modular biosynthetic machineries and non-modular enzymatic systems, respectively.
Contents
1 Introduction
2 Modular biosynthesis of alkaloids
2.1 Diketopiperazine alkaloids
2.2 Pyrrolobenzodiazepines
2.3 Tetrahydroisoquinolines
2.4 Maremycins family
3 Non-modular biosynthesis of alkaloids
3.1 Streptonigrinoids
3.2 Spirocycloproprane family
3.3 Indolocarbazole alkaloids
3.4 Aminobenzoquinone-aziridine alkaloids
4 Conclusion and outlook

CLC Number: 

[1] Cushnie T P T, Cushnie B, Lamb A J. Int. J. Antimicrob. Ag., 2014, 44:377.
[2] Amirkia V, Heinrich M. Planta Medica, 2014, 80:1461
[3] Dewick P M. Medicinal Natural Products:A Biosynthetic Approach. UK:Wiley, 2009.
[4] Narcross L, Fossati E, Bourgeois L, Dueber J E, Martin V J J. Trends Biotechnol., 2016, 34:228.
[5] Jaspars M, Challis G. Nature, 2014, 506:38.
[6] Demain A L, Sanchez S. J. Antibiot., 2009, 62:5.
[7] Anarat-Cappillino G, Sattely E S. Curr. Opin. Plant Biol., 2014, 19:51.
[8] Katz L, Baltz R H. J. Ind. Microbiol. Biotechnol., 2016, 43:155.
[9] Hertweck C. Angew. Chem. Int. Ed., 2009, 48:4688.
[10] Fischbach M A, Walsh C T. Chem. Rev., 2006, 106:3468.
[11] Koglin A, Walsh C T. Nat. Prod. Rep., 2009, 26:987.
[12] Khosla C. J. Org. Chem., 2009, 74:6416.
[13] Fischer P M. J. Pept. Sci., 2003, 9:9.
[14] Cornacchia C, Cacciatore I, Baldassarre L, Mollica A, Feliciani F, Pinnen F. Mini-Rev. Med. Chem., 2012, 12:2.
[15] Ma Y M, Liang X A, Kong Y, Jia B. J. Agric. Food Chem., 2016, 64:6659.
[16] Lautru S, Gondry M, Genet R, Pernodet J L. Chem. Biol., 2002, 9:1355.
[17] Gondry M, Sauguet L, Belin P, Thai R, Amouroux R, Tellier C, Tuphile K, Jacquet M, Braud S, Courçon M, Masson C, Dubois S, Lautru S, Lecoq A, Hashimoto S, Genet R, Pernodet J L. Nat. Chem. Biol., 2009, 5:414.
[18] Meng S, Han W, Zhao J, Jian X H, Pan H X, Tang G L. Angew. Chem., Int. Ed., 2018, 57:719.
[19] King R R, Lawrence C H, Calhoun L A, Ristaino J B. J. Agric. Food Chem., 1994, 42:1791.
[20] Healy F G, Wach M, Krasnoff S B, Gibson D M, Loria R. Mol. Microbiol., 2000, 38:794.
[21] Kers J A, Wach M J, Krasnoff S B, Widom J, Cameron K D, Bukhalid R A, Gibson D M, Crane B R, Loria R. Nature, 2004, 429:79.
[22] Barry S M, Kers J A, Johnson E G, Song L J, Aston P R, Patel B, Krasnoff S B, Crane B R, Gibson D M, Loria R, Challis G L. Nat. Chem. Biol., 2012, 8:814.
[23] Gerratana B. Med. Res. Rev., 2012, 32:254.
[24] Hurley L H, Lasswell W L, Ostrander J M, Parry R. Biochemistry, 1979, 18:4230.
[25] Hurley L H, Gairola C. Antimicrob. Agents Chemother., 1979, 15:42.
[26] Li W, Khullar A, Chou S C, Sacramo A, Gerratana B. Appl. Environ. Microbiol., 2009, 75:2869.
[27] Giessen T W, Kraas F I, Marahiel M A. Biochemistry, 2011, 50:5680.
[28] Scott J D, Williams R M. Chem. Rev., 2002, 102:1669.
[29] Siengalewicz P, Rinner U, Mulzer J. Chem. Soc. Rev., 2008, 37:2676.
[30] Le V H, Inai M, Williams R M, Kan T. Nat. Prod. Rep., 2015, 32:328.
[31] Pospiech A, Cluzel B, Bietenhader J, Schupp T. Microbiology, 1995, 141:1793.
[32] Velasco A, Acebo P, Gomez A, Schleissner C, Rodríguez P, Aparicio T, Conde S, Muñoz R, De La Calle F, Garcia J L, Sánchez-Puelles J M. Mol. Microbiol., 2005, 56:144.
[33] Li L, Deng W, Song J, Ding W, Zhao Q F, Peng C, Song W W, Tang G L, Liu W. J. Bacteriol., 2008, 190:251.
[34] Rath C M, Janto B, Earl J, Ahmed A, Hu F Z, Hiller L, Dahlgren M, Kreft R, Yu F, Wolff J J, Kweon H K, Christiansen M A, Håkansson K, Williams R M, Ehrlich G D, Sherman D H. ACS Chem. Biol., 2011, 6:1244.
[35] Pu J Y, Peng C, Tang M C, Zhang Y, Guo J P, Song L Q, Hua Q, Tang G L. Org. Lett., 2013, 15:3674.
[36] Arai T, Yazawa K, Takahashi K, Maeda A, Mikami Y. Antimicrob. Agents Chemother., 1985, 28:5.
[37] Mikami Y, Takahashi K, Yazawa K, Arai T, Namikoshi M, Iwasaki S, Okuda S. J. Biol. Chem., 1985, 260:344.
[38] Koketsu K, Watanabe K, Suda H, Oguri H, Oikawa H. Nat. Chem. Biol., 2010, 6:408.
[39] Vincent G, Lane J W, Williams R M. Tetrahedron Lett., 2007, 48:3719.
[40] Fu C Y. J. Microbiol. Biotechnol., 2009, 19:439.
[41] Tang M C, Fu C Y, Tang G L. J. Biol. Chem., 2012, 287:5112.
[42] Balk-Bindseil W, Helmke E, Weyland H, Laatsch H. Liebigs Annalen, 1995, 1995:1291.
[43] Tang Y Q, Sattler I, Thiericke R, Grabley S, Feng X Z. Eur. J. Org. Chem., 2001, 2001:261.
[44] Lan Y X, Zou Y, Huang T T, Wang X Z, Brock N L, Deng Z X, Lin S J. Sci. China Chem., 2016, 59:1224.
[45] Zou Y, Fang Q, Yin H X, Liang Z T, Kong D K, Bai L Q, Deng Z X, Lin S J. Angew. Chem., Int. Ed., 2013, 52:12951.
[46] Zhang Y Y, Zou Y, Brock N L, Huang T T, Lan Y X, Wang X Z, Deng Z X, Tang Y, Lin S J. J. Am. Chem. Soc., 2017, 139:11887.
[47] Shaikh I A, Johnson F, Grollman A P. J. Med. Chem., 1986, 29:1329.
[48] Chiu Y Y, Lipscomb W N. J. Am. Chem. Soc., 1975, 97:2525.
[49] Herlt A J, Rickards R W, Wu J P. J. Antibiot., 1985, 38:516.
[50] Xu F, Kong D K, He X Y, Zhang Z, Han M, Xie X Q, Wang P, Cheng H R, Tao M F, Zhang L P, Deng Z X, Lin S J. J. Am. Chem. Soc., 2013, 135:1739.
[51] Kong D K, Zou Y, Zhang Z, Xu F, Brock N L, Zhang L P, Deng Z X, Lin S J. Sci. Rep., 2016, 6:20273.
[52] Hartley D L, Speedie M K. Biochem. J., 1984, 220:309.
[53] Speedie M K, Hartley D L. J. Antibiot., 1984, 37, 159.
[54] Han M, Yin H X, Zou Y, Brock N L, Huang T T, Deng Z X, Chu Y W, Lin S J. ACS Catal., 2016, 6:788.
[55] Wo J, Kong D K, Brock N L, Xu F, Zhou X F, Deng Z X, Lin S J. ACS Catal., 2016, 6:2831.
[56] Parrish J P, Kastrinsky D B, Wolkenberg S E, Igarashi Y, Boger D L. J. Am. Chem. Soc., 2003, 125:10971.
[57] Chari R V J, Miller M L, Widdison W C. Angew. Chem. Int. Ed., 2014, 53:3796.
[58] Tichenor M S, MacMillan K S, Trzupek J D, Rayl T J, Hwang I, Boger D L. J. Am. Chem. Soc., 2007, 129:10858.
[59] Huang W, Xu H, Li Y, Zhang F, Chen X Y, He Q L, Igarashi Y, Tang G L. J. Am. Chem. Soc., 2012, 134:8831.
[60] Xu H, Huang W, He Q L, Zhao Z X, Zhang F, Wang R X, Kang J W, Tang G L. Angew. Chem. Int. Ed., 2012, 51:10532.
[61] Yuan H, Zhang J R, Cai Y J, Wu S, Yang K, Chan H C S, Huang W, Jin W B, Li Y, Yin Y, Igarashi Y, Yuan S G, Zhou J H, Tang G L. Nat. Commun., 2017, 8:1485.
[62] Wu S, Jian X H, Yuan H, Jin W B, Yin Y, Wang L Y, Zhao J, Tang G L. ACS Chem. Biol., 2017, 12:1603.
[63] Sánchez C, Méndez C, Salas J A. Nat. Prod. Rep., 2006, 23:1007.
[64] Nakano H, ōmura S. J. Antibiot., 2009, 62:17.
[65] Bush J A, Long B H, Catino J J, Bradner W T. J. Antibiot., 1987, 40:668.
[66] Pereira E R, Belin L, Sancelme M, Prudhomme M, Ollier M, Rapp M, Sevère D, Riou J F, Fabbro D, Meyer T. J. Med. Chem., 1996, 39:4471.
[67] Pearce C J, Doyle T W, Forenza S, Lam K S, Schroeder D R. J. Nat. Prod., 1988, 51:937.
[68] Lam K S, Forenza S, Doyle T W, Pearce C J. J. Ind. Microbiol., 1990, 6:291.
[69] Sánchez C, Butovich I A, Braña A F, Rohr J, Méndez C, Salas J A. Chem. Biol., 2002, 9:519.
[70] Yeh E, Garneau S, Walsh C T. Proc. Natl. Acad. Sci., 2005, 102:3960.
[71] Nishizawa T, Grüschow S, Jayamaha D H E, Nishizawa-Harada C, Sherman D H. J. Am. Chem. Soc., 2006, 128:724.
[72] Howard-Jones A R, Walsh C T. J. Am. Chem. Soc., 2007, 129:11016.
[73] Salas A P, Zhu L L, Sánchez C, Braña A F, Rohr J, Méndez C, Salas J A. Mol. Microbiol., 2005, 58:17.
[74] Zhang C S, Albermann C, Fu X, Peters N R, Chisholm J D, Zhang G S, Gilbert E J, Wang P G, Van Vranken D L, Thorson J S. ChemBioChem, 2006, 7:795.
[75] Anizon F, Moreau P, Sancelme M, Laine W, Bailly C, Prudhomme M. Bioorg. Med. Chem., 2003, 11:3709.
[76] Hata T, Hoshi T, Kanamori K, Matsumae A, Sano Y, Shima T, Sugawara R. J. Antibiot., 1956, 9:141.
[77] Tomasz M, Palom Y. Pharmacol. Ther., 1997, 76:73.
[78] Ishihara M, Kubota T, Watanabe M, Kawano Y, Narai S, Yasui N, Otani Y, Teramoto T, Kitajima M. Oncol. Rep., 1999, 6:621.
[79] Arai H, Kanda Y, Ashizawa T, Morimoto M, Gomi K, Kono M, Kasai M. J. Med. Chem., 1994, 37:1794.
[80] Floss H G, Yu T W, Arakawa K. J. Antibiot., 2011, 64:35.
[81] Varoglu M, Mao Y Q, Sherman D H. Abstracts of Papers of the American Chemical Society, 1999, 217:U165.
[82] Mao Y Q, Varoglu M, Sherman D H. Chem. Biol., 1999, 6:251.
[83] Mao Y Q, Varoglu M, Sherman D H. J. Bacteriol., 1999, 181:2199.
[84] Varoglu M, Mao Y Q, Sherman D H. J. Am. Chem. Soc., 2001, 123:6712.
[85] Grüschow S, Chang L C, Mao Y Q, Sherman D H. J. Am. Chem. Soc., 2007, 129:6470.
[86] Sitachitta N, Lopanik N B, Mao Y Q, Sherman D H. J. Biol. Chem., 2007, 282:20941.
[1] Xiaoxiao Wu, Kaiqing Ma. Total Synthesis of Stemona Alkaloids [J]. Progress in Chemistry, 2020, 32(6): 752-760.
[2] Luo Shipeng, Huang Peiqiang. Malic acid——A Versatile Chiral Building Block in the Enantioselective Total Synthesis of Natural Products and in Synthetic Methodologies [J]. Progress in Chemistry, 2020, 32(11): 1846-1868.
[3] Kangkang Zhi, Xin Yang. Natural Product Gels and Their Gelators [J]. Progress in Chemistry, 2019, 31(9): 1314-1328.
[4] Bin Jia, Yangmin Ma*, Di Chen, Pu Chen, Yan Hu. Studies on Structure and Biological Activity of Indole Diketopiperazine Alkaloids [J]. Progress in Chemistry, 2018, 30(8): 1067-1081.
[5] Yuxia Gao, Yun Liang, Jun Hu, Yong Ju. Supramolecular Chiral Self-Assembly Based on Small Molecular Natural Products [J]. Progress in Chemistry, 2018, 30(6): 737-752.
[6] Xiaoyu Liu, Tao Xiao, Yong Qin. Total Synthesis of the Akuammiline Alkaloid Strictamine [J]. Progress in Chemistry, 2018, 30(5): 578-585.
[7] Xu Lining, Zhang Juntao, Tao Cheng, Cao Xiaoping. Advances in the Synthesis of Vinyl Chloride Compounds [J]. Progress in Chemistry, 2013, 25(11): 1876-1887.
[8] Wu Jindan, Ju Yong. Molecular and Ion Recognition Molecules Based on Natural Products [J]. Progress in Chemistry, 2013, 25(11): 1888-1897.
[9] Song Gao, Sumit Basu, Guangyi Yang, Arijita Deb, Ming Hu. Oral Bioavailability Challenges of Natural Products Used in Cancer Chemoprevention [J]. Progress in Chemistry, 2013, 25(09): 1553-1574.
[10] Wang Jue, Zhan Yuexiong, Jiang Biao. Dimeric Pyrrole-Imidazole Alkaloids [J]. Progress in Chemistry, 2011, 23(10): 2065-2078.
[11] Tong Xing, Xiao Xiaohua, Deng Jianchao, Wang Jiayue, Li Gongke. Applications of Low Temperature Microwave Technique in Chemistry Research [J]. Progress in Chemistry, 2010, 22(12): 2462-2468.
[12] . The Study of Resource Chemistry [J]. Progress in Chemistry, 2010, 22(04): 537-556.
[13] Ge Huiming|Tan Renxiang**. Symbionts, an Important Source of New Bioactive Natural Products [J]. Progress in Chemistry, 2009, 21(01): 30-46.
[14] Hao Xiaojiang*. Chemical and Biological Study of Spiraea japonica Complex [J]. Progress in Chemistry, 2009, 21(01): 84-99.
[15] Yang Zhen*. Syntheses of Biological Active Natural Products and Natural Product-Like Molecules [J]. Progress in Chemistry, 2009, 21(01): 47-54.