中文
Announcement
More
Progress in Chemistry 2018, Vol. 30 Issue (11): 1601-1614 DOI: 10.7536/PC180316 Previous Articles   Next Articles

• Review •

Preparation and Functional Application of Janus Particles

Wanrong Zhou, Wei Sun*, Pinghui Yang   

  1. 1. Department of Materials Science and Engineering, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China;
    2. Key Laboratory of Specialty Polymer, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21104036), the Ningbo Natural Science Foundation(No.2018A610113), the Zhejiang Key Technology Innovation Team Sets Up Program (No.211R50001-04),and the Ningbo University Wang Kuancheng Happiness Fund.
PDF ( 1462 ) Cited
Export

EndNote

Ris

BibTeX

Janus particle refers to particle that possesses two or more sides with different surface chemical compositions or polarities, or is composed of two parts with different geometrical morphologies. With rapid development of the preparation methods of Janus particles, the research attention has been shifted from particles synthesis to applications of the Janus particles in the fields of biomedicine, catalysis, advanced materials and anti-fouling. In this review, research progress of Janus particles is extensively introduced with special focus on functional application of Janus particles. The first part of the review illustrates the progress of synthesizing methods including the selective surface modification, seeded crystallization, microfluidics, self-assembly of block copolymer and electrochemical deposition. The second part gives detailed discussions regarding the applications of Janus particles in biomedicine, interfacial catalyst, surfactants, composite materials, micromotors and anti-fouling. An outlook of Janus particle and its applications in future perspective is also made.
Contents
1 Introduction
2 Synthesis of Janus particles
2.1 Selective surface modification
2.2 Seeded crystallization
2.3 Microfluidic synthesis
2.4 Self-assembly of block copolymer
2.5 Electrochemical deposition
2.6 Other preparation strategies
3 Functional application of Janus particles
3.1 Biomedicine
3.2 Interfacial catalyst
3.3 Surfactant
3.4 Composite material
3.5 Micromotors
3.6 Anti-fouling
4 Conclusion

CLC Number: 

[1] De Gennes P G. Angew. Chem. Int. Ed., 1992, 31:842.
[2] Li P, Li K, Niu X F, Fan Y B. RSC Adv., 2016, 6:99034.
[3] Susewind M, Schilmann A M, Heim J, Henkel A, Link T, Fischer K, Strand D, Kolb U, Tahir M N, Brieger J, Tremel W. J. Mater. Chem. C, 2015, 3:1813.
[4] Wang Z, Wang Y P. Materials., 2016, 9:903.
[5] Pradhan S, Ghosh D, Chen S W. ACS Appl. Mater. Interfaces, 2009, 1:2060.
[6] Xie P F, Cao X N, Lin Z T, Javanmard M. Lab Chip, 2017, 17:1939.
[7] Lee V E, Sosa C, Liu R, Prudhomme R K, Priestley R D. Langmuir, 2017, 33:3444.
[8] Yin J C, Chen D Q, Wu S S, Li C R, Liu L Z, Shao Y Z. Nanosale, 2017, 9:16661.
[9] Jia F, Liang F X, Yang Z Z. Langmuir, 2018, 34, 1718.
[10] Tang J N, Li W X, Cao X D, Dong H. RSC Adv., 2015, 5:12872.
[11] Chi M H, Fang Z X, Ko H W, Chang C W, Chen J T. J. Phy. Chem. C, 2016, 120, 28867.
[12] Shao D, Li J, Zheng X, Pan Y, Wang Z, Zhang M, Chen Q X, Dong W F, Chen L. Biomaterials, 2016, 100:118.
[13] Liu B, Zhang C L, Liu J G, Qu X Z, Yang Z Z. Chem. Commun., 2009, 26:3817.
[14] Zhao H, Liang F X, Qu X Z, Yang Z Z. Macromolecules, 2015, 48:700.
[15] Wang Y H, Zhang C L, Tang C, Li J, Shen K, Liu J G, Qu X Z, Li J L, Wang Q, Yang Z Z. Macromolecules, 2011, 44:3787.
[16] Ghoussoub Y E, Schlenoff J B. Langmuir, 2016, 32:3623.
[17] Wu M B, Yang H C, Wang J J, Wu G P, Xu Z K. ACS Appl. Mater. Interface, 2017, 9:5062.
[18] 陈云华(Chen Y H), 王朝阳(Wang Z Y), 李煜(Li Y), 童真(Tong Z). 化学进展(Progress in Chemistry), 2009, 21(4):615.
[19] Walther A, Muller A H E. Chem. Rev., 2013, 113:5194.
[20] Perro A, Meunier F, Schmitt V, Ravaine S. Colloids Surf., A:Physicochem. Eng. Aspects., 2009, 332:57.
[21] Zhang J, Grzybowski B A, Granick S. Langmuir, 2017, 33:6964.
[22] Kaewsaneha C, Tangboriboonrat P, Polpanich D, Eissa M, Elaissari A. ACS Appl. Mater. Interface, 2013, 5:1857.
[23] 翟文中(Zhai W Z), 何玉凤(He Y F), 王斌(Wang B), 熊玉兵(Xiong Y B), 宋鹏飞(Song P F), 王荣民(Wang R M). 化学进展(Progress in Chemistry), 2017, 29(1):127.
[24] 杨平辉(Yang P H), 孙巍(Sun W), 胡思(Hu X), 陈忠仁(Chen Z R). 化学进展(Progress in Chemistry), 2014, 26(7):1107.
[25] Poggi E, Gohy J F. Colloid Polym Sci., 2017, 295:2083.
[26] Zenerino A, Peyratout C, Aimable A. J. Collid Interface Sci., 2015, 450:174.
[27] Cha B G, Piao Y Z, Lim J. Mater. Res. Rull., 2015, 70:424.
[28] Casagrande C, Fabre P, Raphael E, Veyssie M. Europhys. Lett., 1989, 9:251.
[29] Hong L, Jiang S, Granick S. Langmuir, 2006, 22:9495.
[30] Panwar K, Jassal M, Agrawal A K. Particuology, 2017, 33:50.
[31] Huang C X, Shen X T. Chem. Commun., 2014, 50:2646.
[32] Yu H, Chen M, Rice P M, Wang S X, White R L, Sun S Z. Nano. Lett., 2005, 5:379.
[33] Chen T, Chen G, Xing S X, Wu T, Chen H Y. Chem. Mater., 2010, 22:3826.
[34] Feng Y H, He J T, Wang H, Tay Y Y, Sun H, Zhu L F, Chen H Y. J. Am. Chem. Soc., 2012, 134:2004.
[35] Feng Y H, Wang Y W, Song X H, Xing S X, Chen H Y. Chem Sci., 2017, 8:430.
[36] Zhu T T, Cheng R, Sheppard G R, Locklin J, Mao L D. Langmuir, 2015, 31:8531.
[37] Zhang C C, Chang M W, Li Y D, Qi Y K, Wu J W, Ahmad Z, Li J S. RSC Adv., 2016, 6:77174.
[38] Varma V B, Wu R G, Wang Z P, Ramanujan R V. Lab Chip., 2017, 17:3514.
[39] Hessberger T, Braun L B, Henrich F, Muller C, Gießelmann F, Serra C, Zental R. J. Mater. Chem. C, 2016, 4:8778.
[40] Nie Z H, Li W, Seo M, Xu S Q, Kumacheva E. J. Am. Chem. Soc., 2006, 128:9408.
[41] Yu X L, Zhang C C, You S J, Liu H Q, Zhang L L, Liu W, Guo S S, Zhao X Z. Appl. Phys. Lett., 2016, 108:073504.
[42] Walther A, Muller A H E. Soft Matter, 2008, 4:663.
[43] Groschel A H, Muller A H E. Nanoscale, 2015, 7:11841.
[44] Sfika V, Tsitsilianis C. Macromolecules, 2004, 37:9551.
[45] Cheng L, Zhang G Z, Zhu L, Chen D Y, Jiang M.Angew. Chem. Int. Ed., 2008, 47:10171.
[46] Voets I K, Fokkink R, Hellweg T, King S M, Waard P D, Keizer A D, Stuart M A C. Soft Matter, 2009, 5:999.
[47] Loget G, Roche J, Kuhn A. Adv. Mater.,2012, 24:5111.
[48] Tiewcharoen S, Warakulwit C, Lapeyre V, Garrigue P, Fourier L, Elissalde C, Buffiere S, Legros P, Gayot M, Limtrakul J, Kuhn A. Angew. Chem. Int. Ed., 2017, 56:11431.
[49] Yabu H, Kanahara M, Shimomura M, Arita T, Harano K, Nakamura E, Higuchi T, Jinnai H. ACS Appl. Mater. Interfaces, 2013, 5, 3262.
[50] Yabu H, Ohshima H, Saito Y. ACS Appl. Mater. Interfaces, 2014, 6:18122.
[51] Yu X J, Huang S B, Chen K M, Zhou Z M, Guo X H, Li L. Ind. Eng. Chem. Res., 2015, 54:2690.
[52] Yang M, Guo Y G, Wu Q, Luan Y, Wang G. Polymer, 2014, 55:1948.
[53] Qu L L, Hu H C, Yu J Q, Yu X Y, Liu J, Xu Y, Zhang Q. Langmuir, 2017, 33:5269.
[54] Hu H C, Wu L Z, Tan Y S, Zhong Q X, Chen M, Qiu Y H, Yang D, Sun B Q, Zhang Q, Yin Y D. J. Am. Chem. Soc., 2018, 140:406.
[55] Zhai W Z, Li T, He Y F, Xiong Y B, Wang R M. RSC Adv., 2015, 5:76211.
[56] Zhang G, Wang D Y, Mohwald H. Nano Lett., 2005, 5:143.
[57] Wang D, Mbhwald H. J. Mater. Chem., 2004, 14:459.
[58] Sotiriou G A, Hirt A M, Lozach P Y, Teleki A, Krumeich F, Pratsinis S E. Chem. Mater., 2011, 23:1985.
[59] Ray C, Pal T. J. Mater. Chem. A, 2017, 5:9465.
[60] Reguera J,Aberasturi D J D, Winckelmans N, Langer J, Bals S, Liz-Marzan M L. Faraday Discuss., 2016, 191:47.
[61] Panwar K, Jassel M, Agrawal A K. Appl. Surf. Sci., 2017, 411:368.
[62] Millman B K, Prevo B G, Velev O D. Nat. Mater., 2005, 4:98.
[63] Biji P, Patnaik A. Analyst, 2012, 137:4795.
[64] Sokolovskaya E, Rahmani S, Misra A C, Brase S, Lahann J. ACS Appl. Mater. Interfaces, 2015, 7:9744.
[65] Suci P A, Kang S, Young M, Douglas T. J. Am. Chem. Soc., 2009, 131:9164.
[66] Lan J W, Chen J Y, Li N X, Ji X H, Yu M X, He Z K. Talanta, 2016, 151:126.
[67] Lu C, Liu X J, Li Y F, Yu F, Tang L H, Hu Y J, Ying Y B. ACS Appl. Mater. Interfaces, 2015, 7:15395.
[68] Cao H, Yang Y H, Chen X, Shao Z Z. Nanoscale, 2016, 8:6754.
[69] Sun X T, Zhang Y, Zheng D H, Yue S, Yang C G, Xu Z R. Biosens. Bioelectron., 2017, 92:81.
[70] Li P, Li K, Niu X F, Fan Y B. RSC Adv., 2016, 6:99034.
[71] Chen B, Jia Y L, Gao Y, Sanchez L, Anthony S M, Yu Y. ACS Appl. Mater. Interfaces, 2014, 6:18435.
[72] Lee K, Yu Y. J. Mater. Chem. B, 2017, 5:4410.
[73] Sanchez L, Yi Y, Yu Y. Nanoscale, 2017, 9:288.
[74] Rucinskaite G, Thompson S A, Paterson A, Rica R D L. Nanoscale, 2017, 9:5404.
[75] Chang Z M, Wang Z, Lu M M, Shao D, Yue J, Yang D, Li M Q, Dong W F. Colloid Surf. B:Biointerfaces, 2017, 157:199.
[76] Li W X, Dong H, Tang G N, Ma T, Cao X D. RSC Adv., 2015, 5:23181.
[77] Wang X X, Cao D W, Tang X J, Yang J J, Jiang D Y, Liu M, He N Y, Wang Z F. ACS Appl. Mater. Interfaces, 2016, 8:19321.
[78] Zhang M J, Zhang L Y, Chen Y D, Li L, Su Z M, Wang C G. Chem Sci., 2017, 8:8067.
[79] He W P, Frueh J, Hu N, Liu L P, Gai M Y, He Q. Adv. Sci., 2016, 3:1600206.
[80] Kirillova A, Schliebe C, Stoychev G, Jakob A, Lang H, Synytska A. ACS Appl. Mater. Interfaces, 2015, 7:21218.
[81] Liu Y J, Hu J K, Yu X T, Xu X Y, Gao Y, Li H M, Liang F X. J. Colloid Interface Sci., 2017, 490:357.
[82] Seo Y D, Lee C, Lee K J, Jang J. Chem. Commun., 2016, 52:9825.
[83] Cao W, Huang R L, Qi W, Su R X, He Z M. ACS Appl. Mater. Interfaces, 2015, 7:465.
[84] Wang J H, Huang R L, Qi W, Su R X, He Z M. Langmuir, 2017, 33:12317.
[85] Cao Z L, Chen H N, Zhu S D, Zhang W W, Wu X F, Shan G R, Ziener U, Qi D M. Langmuir, 2015, 31:4341.
[86] Kuttiyiel K A, Sasaki K, Park G G, Vukmirovic M B, Wu L J, Zhu Y M, Chen J G, Adzic R R. Chem. Commun., 2017, 53:1660.
[87] Binks B P, Fletcher P D I. Langmuir, 2001, 17:4708.
[88] Xue W, Yang H Q, Du Z P. Langmuir, 2017, 33:10283.
[89] Wei D, Ge L L, Lu S H, Li J J, Guo R. Langmuir, 2017, 33:5819.
[90] Yang P H, Huang J J, Sun W, Wei Y J, Liu Y W, Ding L Y, Bao J B, Chen Z R. RSC Adv., 2016, 6:55860.
[91] 杨平辉(Yang P H), 朱嘉峰(Zhu J F), 孙巍(Sun W), 周婉蓉(Zhou W R). 高等学校化学学报(Chemical Journal of Chinese University), 2017, 38(4):678.
[92] Li W L, Cai X J, Ma S H, Zhan X H, Lan F, Wu Y, Gu Z W. RSC Adv., 2016, 6:40450.
[93] Noguchi T G, Iwashita Y, Kimura Y. Langmuir, 2017, 33:1030.
[94] Xie G J, Krys P, Tilton R D, Matyjaszewski K. Macromolecules, 2017, 50:2942.
[95] Zhai W Z, Wang B, Wang Y S, He Y F, Song P F, Wang R M. Colloid Surf., A:Physicochem. Eng. Aspects., 2016, 503:94.
[96] Tang L, Yang J, Yin Q Q, Yang L H, Dong D Y, Qin F, Liu J Y, Fan Q, Li J H, Zhao W L, Zhang W Y, Wang J Y, Zhu T, Zhang W S, Liu J. Chem. Commun., 2017, 53:8675.
[97] Kim H, Cho J, Cho J, Park B J, Kim J W. ACS Appl. Mater. Interfaces, 2018, 10, 1408.
[98] Jiang S, Chen Q, Tripathy M, Luijten E, Schweizer K S, Granick S. Adv. Mater., 2010, 22:1060.
[99] Lee J, Yezer B A, Prieve D C, Behrens S H.Langmuir, 2016, 32:3095.
[100] Fujii S, Yokoyama Y C, Nakayama S, Ito M, Yusa S, Nakamura Y. Langmuir, 2018, 34, 933.
[101] Yang Q Y, Loos K. Polym. Chem., 2017, 8:641.
[102] Han D, Wen T J, Han G, Deng Y, Deng Y, Zhang Q, Fu Q. Polymer, 2018, 136:84.
[103] Wang H T, Fu Z A, Zhao X W, Li Y J, Li J Y. ACS Appl. Mater. Interfaces, 2017, 9:14358.
[104] Panwar K, Jassel M, Agrawal A K. Surf. Coat. Technol., 2017, 309:897.
[105] Howse J R, Jones R A L, Ryan A J, Gough T, Vafabakhsh R, Golestanian R. Phys. Rev. Lett., 2007, 99, 048102.
[106] Ma X, Jannasch A, Albrecht U R, Hahn K, Miguel-Lopez A, Schaffer E, Sanchez A. Nano Lett., 2015, 15:7043.
[107] Ma X, Jang S, Popescu M N, Uspal W E, Miguel-Lopez A, Hahn K, Kim D P, Sanchez S. ACS Nano, 2016,10, 8751.
[108] Moo J G S, Wang H, Pumera M. Chem. Eur. J., 2016, 22:355.
[109] Banerjee I, Pangule R C, Kane R S. Adv. Mater., 2011, 23, 690.
[110] Almeida E, Diamantino T C, De S O. Prog. Org. Coat., 2007, 59, 2.
[111] Kiriiiova A, Marschellke C, Friedrichs J, Werner C, Synytska A. ACS Appl. Mater. Interfaces, 2016, 8:32591.
[112] Kiriiiova A, Ionov L, Rosiman I V, Synytska A. Chem. Mater., 2016, 28:6995.
[113] Pan D, Mou F Z, Li X F, Deng Z Y, Sun J, Xu L, Guan J G. J. Mater. Chem. A, 2016, 4:11768.
[114] Ei-sherif R M, Lasheen T A, Jebril E A. J. Mol. Liq., 2017, 241:260.
[115] Park J W, Na W, Jang J. J. Mater. Chem. A, 2016, 4:8263.
[1] Mingxin Zheng, Zhenzhi Tan, Jinying Yuan. Construction and Application of Photoresponsive Janus Particles [J]. Progress in Chemistry, 2022, 34(11): 2476-2488.
[2] Yuanxia Zhang, Yan Bao, Jianzhong Ma. Synthesis of Janus Particles and Their Application Progress in Pickering Emulsion [J]. Progress in Chemistry, 2021, 33(2): 254-262.
[3] Danqing Zou, Cong Wang, Fei Xiao, Yuchen Wei, Lin Geng, Lei Wang. Janus Particles Applied in Environmental Detection [J]. Progress in Chemistry, 2021, 33(11): 2056-2068.
[4] Yi Chenglin, Yang Yiqun, Jiang Jinqiang, Liu Xiaoya, Jiang Ming. Research and Application of Particle Emulsifiers [J]. Progress in Chemistry, 2011, 23(01): 65-79.
[5] Chen Yunhua, Wang Chaoyang**, Li Yu, Tong Zhen. Synthesis of Janus Particles [J]. Progress in Chemistry, 2009, 21(04): 615-621.
[6] Zhou Zhiming* |Jiang Fei,Mo Fanyiang. Advances of Recycling Chiral Catalysts in Ionic Liquids [J]. Progress in Chemistry, 2007, 19(01): 42-50.