中文
Announcement
More
Progress in Chemistry 2018, Vol. 30 Issue (11): 1624-1633 DOI: 10.7536/PC180314 Previous Articles   Next Articles

• Review •

Development and Application of Electrolytes in Supercapacitors

Jinxin Yi1,2, Zhipeng Huo1*, Abdullah M. Asiri3, Khalid A. Alamry3, Jiaxing Li1,3*   

  1. 1. Key Laboratory of Photovolatic and Energy Conservation Materials, Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China;
    2. University of Science and Technology of China, Hefei 230026, China;
    3. Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No. 21677146) and the Anhui Provincial Natural Science Foundation (No. 1708085MB31).
PDF ( 1285 ) Cited
Export

EndNote

Ris

BibTeX

As a new type of energy storage device, supercapacitors have attracted wide attention because of their excellent performance, such as high charge and discharge speed, high power density, and long cycle life. The electrolytes have been considered as one of the most important factors affecting the performance of supercapacitors, whose ionic type and size, ion mobility, ionic conductivity, viscosity, thermal/electrochemical stability and the operating voltage window have the important influence on the working voltage, energy density and cycle life of the device. In view of recent research status of electrolytes, this paper summarizes the charge storage mechanism, key parameters of performance evaluation and the research progress of electrolytes in supercapacitors. The classification of electrolytes is specially presented, including liquid electrolytes which incorporate aqueous, organic, ionic liquid, redox-active electrolytes and solid-state/quasi-solid-state electrolytes which cover inorganic solid-state electrolytes, solid polymer electrolytes, and gel polymer electrolytes. The latest research and development of various electrolytes are reviewed and discussed, and the influences of electrolyte properties on the performance of supercapacitors are discussed in detail. The methods of design and optimization of electrolytes for supercapacitors are emphasized in this paper. The difficulties of producing high-performance electrolytes are pointed out, and the future research directions are put forward to overcome these difficulties without sacrificing existing advantages.
Contents
1 Introduction
2 Electrolytes and their categories
2.1 Liquid electrolytes
2.2 Solid-state/quasi-solid-state electrolytes
3 Conclusion

CLC Number: 

[1] Service R F. Science, 2006, 313:902.
[2] Burke A. Electrochim. Acta, 2007, 53:1083.
[3] Frackowiak E. Physical Chemistry Chemical Physics, 2007, 9:1774.
[4] Yu Z, Tetard L, Zhai L, Thomas J. Energy & Environmental Science, 2015, 8:702.
[5] Wei L, Nitta N, Yushin G. ACS Nano, 2013, 7:6498.
[6] Wu X L, Wen T, Guo H L, Yang S, Wang X, Xu A W. ACS Nano, 2013, 7:3589.
[7] Portet C, Yushin G, Gogotsi Y. Carbon, 2007, 45:2511.
[8] Wu Z S, Sun Y, Tan Y Z, Yang S, Feng X, Müllen K. J. Am. Chem. Soc., 2012, 134:19532.
[9] Wang G, Zhang L, Zhang J. Chem. Soc. Rev., 2012, 41:797.
[10] Wang K, Wu H, Meng Y, Wei Z. Small, 2014, 10:14.
[11] 刘海晶(Liu H H), 夏永姚(Xia Y Y). 化学进展(Progress in Chemistry), 2011, 23:595.
[12] Guan C, Liu J, Wang Y, Mao L, Fan Z, Shen Z, Zhang H, Wang J. ACS Nano, 2015, 9:5198.
[13] Lee M, Wee B H, Hong J D. Advanced Energy Materials, 2015, 5:1401890.
[14] Tang H, Wang J, Yin H, Zhao H, Wang D, Tang Z. Adv. Mater., 2015, 27:1117.
[15] 李丹(Li D), 林保平(Lin B P), 孙莹(Sun Y), 杨洪(Yang H), 张雪勤(Zhang X Q). 化学进展(Progress in Chemistry), 2015, 27(4):404.
[16] Zhang L L, Zhao X S. Chem. Soc. Rev., 2009, 38:2520.
[17] Jost K, Dion G, Gogotsi Y. J. Mater. Chem. A, 2014, 2:10776.
[18] Galiński M, Lewandowski A, Stepniak I. Electrochim. Acta, 2006, 51:5567.
[19] Fic K, Lota G, Meller M, Frackowiak E. Energy and Environmental Science, 2012, 5:5842.
[20] Lota G, Frackowiak E. Electrochem. Commun., 2009, 11:87.
[21] Fic K, Frackowiak E, Beguin F. J. Mater. Chem., 2012, 22:24213.
[22] Senthilkumar S T, Selvan R K, Lee Y, Melo J S. J. Mater. Chem., 2013, 1:1086.
[23] Ma G, Li J, Sun K, Peng H, Mu J, Lei Z. J. Power Sources, 2014, 256:281.
[24] Chen L, Bai H, Huang Z, Li L. Energy and Environmental Science, 2014, 7:1750.
[25] Roldan S, Granda M, Menendez R, Santamaria R, Blanco C. Electrochim. Acta, 2012, 83:241.
[26] Roldan S, Gonzalez Z, Blanco C, Granda M, Menendez R, Santamaria R. Electrochim. Acta, 2011, 56:3401.
[27] Wu J, Yu H, Fan L, Luo G, Lin J, Huang M. J. Mater. Chem., 2012, 22:19025.
[28] Roldán S, Blanco C, Granda M, Menéndez R, Santamaría R. Angew. Chem. Int. Ed., 2011, 50:1699.
[29] Jiménez-Cordero D, Heras F, Gilarranz M A, Raymundo-Piñero E. Carbon, 2014, 71:127.
[30] Deng L, Wang J, Zhu G, Kang L, Hao Z, Lei Z, Yang Z, Liu Z H. J. Power Sources, 2014, 248:407.
[31] Suárez-Guevara J, Ruiz V, Gomez-Romero P. J. Mater. Chem. A, 2014, 2:1014.
[32] Shinde S S, Gund G S, Dubal D P, Jambure S B, Lokhande C D. Electrochim. Acta, 2014, 119:1.
[33] Wang H, Sun X, Liu Z, Lei Z. Nanoscale, 2014, 6:6577.
[34] Mao B S, Wen Z, Bo Z, Chang J, Huang X, Chen J. ACS Appl. Mater. Interfaces, 2014, 6:9881.
[35] Li L, Peng S, Cheah Y, Teh P, Wang J, Wee G, Ko Y, Wong C, Srinivasan M. Chemistry, 2013, 19:5892.
[36] Wang Q, Yan J, Wang Y, Wei T, Zhang M, Jing X, Fan Z. Carbon, 2014, 67:119.
[37] Li S, Li Q, Lu L, Wang H. RSC Adv., 2012, 2:3298.
[38] Hui X, Ying S M, Yuan G, Chong C, Li L. Electrochem. Solid-State Lett., 2012, 15:A60.
[39] Burke A, Miller M. J. Power Sources, 2011, 196:514.
[40] Yang C M, Kim Y J, Endo M, Kanoh H, Yudasaka M, Iijima S, Kaneko K. J. Am. Chem. Soc., 2007, 129:20.
[41] Arulepp M, Permann L, Leis J, Perkson A, Rumma K, Jänes A, Lust E. J. Power Sources, 2004, 133:320.
[42] Zheng J P, Jow T R. J.Electrochem.Soc., 1997, 144:2417.
[43] Ue M, Ida K, Mori S. J. Electrochem. Soc., 1994, 141:2989.
[44] Chiba K, Ueda T, Yamaguchi Y, Oki Y, Shimodate F, Naoi K. J. Electrochem. Soc., 2011, 158:A872.
[45] Naoi K. Fuel Cells, 2010, 10:825.
[46] Janes A, Thomberg T, Eskusson J, Lust E. J. Electrochem. Soc., 2013, 160:A1025.
[47] Tian S, Li Q, Yoshio M, Wang H. J. Power Sources, 2014, 256:404.
[48] Makoto U E. Electrochemistry, 2007, 75:565.
[49] Yu X, Ruan D, Wu C, Jing W, Shi Z. J. Power Sources, 2014, 265:309.
[50] Laheäär A, Kurig H, Jänes A, Lust E. Electrochim. Acta, 2009, 54:4587.
[51] Väli R, Laheäär A, Jänes A, Lust E. Electrochim. Acta, 2014, 121:294.
[52] Chandrasekaran R, Koh M, Yamauchi A, Ishikawa M. J. Power Sources, 2010, 195:662.
[53] Ebina T, Uno H, Ishizawa S, Nanbu N, Sasaki Y. Chem. Lett., 2005, 34:1014.
[54] Jiang D E, Wu J. Journal of Physical Chemistry Letters, 2013, 4:1260.
[55] Tanaka A, Iiyama T, Ohba T, Ozeki S, Urita K, Fujimori T, Kanoh H, Kaneko K. J. Am. Chem. Soc., 2010, 132:2112.
[56] Yang L, Fishbine B H, Migliori A, Pratt L R. J. Am. Chem. Soc., 2009, 131:12373.
[57] Zhang Q, Rong J, Ma D, Wei B. Energy and Environmental Science, 2011, 4:2152.
[58] McDonough J K, Frolov A I, Presser V, Niu J, Miller C H, Ubieto T, Fedorov M V, Gogotsi Y. Carbon, 2012, 50:3298.
[59] Brandt A, Pohlmann S, Varzi A, Balducci A, Passerini S. Mrs Bulletin/Materials Research Society, 2013, 38:554.
[60] Rogers R D. Acc. Chem. Res., 2007, 40:1077.
[61] Armand M, Endres F, Macfarlane D R, Ohno H, Scrosati B. Nature Materials, 2009, 8:621.
[62] Xia X, Zhan J, Zhong Y, Wang X, Tu J, Fan H J. Small, 2017, 13:1602742.
[63] Wang J, Tang J, Ding B, Malgras V, Chang Z, Hao X, Wang Y, Dou H, Zhang X, Yamauchi Y. Nature Communications, 2017, 8:15717.
[64] Shen B, Xu Z, Guo R, Lang J, Chen J, Yan X. J. Mater. Chem. A, 2016, 4:8180.
[65] Balducci A, Henderson W A, Mastragostino M, Passerini S, Simon P, Soavi F. Electrochim. Acta, 2005, 50:2233.
[66] Lin R, Taberna P, Fantini S, Presser V, Perez C R, Malbosc F, Rupesinghe N L, Teo K B K, Gogotsi Y, Simon P. Journal of Physical Chemistry Letters, 2011, 2:2396.
[67] Fu Y, Cai X, Wu H, Lv Z, Hou S, Peng M, Yu X, Zou D. Adv. Mater., 2012, 24:5713.
[68] Jost K, Stenger D, Perez C R, McDonough J K, Lian K, Gogotsi Y, Dion G. Energy and Environmental Science, 2013, 6:2698.
[69] Liu L, Shen B, Jiang D, Guo R, Kong L, Yan X. Advanced Energy Materials, 2016, 6:1600763.
[70] Lu X, Yu M, Wang G, Tong Y, Li Y. Energy and Environmental Science, 2014, 7:2160.
[71] Peng X, Liu H, Yin Q, Wu J, Chen P, Zhang G, Liu G, Wu C, Xie Y. Nature Communications, 2016, 7:11782.
[72] Kim D, Lee G, Kim D, Yun J, Lee S S, Ha J S. Nanoscale, 2016, 8:15611.
[73] Niu Z, Dong H, Zhu B, Li J, Hng H H, Zhou W, Chen X, Xie S. Adv. Mater., 2013, 25:1058.
[74] Sivaraman P, Thakur A, Kushwaha R K, Ratna D, Samui A B. Electrochemical and Solid State Letters, 2006, 9:A435.
[75] Meng C, Liu C, Chen L, Hu C, Fan S. Nano Lett., 2010, 10:4025.
[76] Yu H, Wu J, Fan L, Lin Y, Xu K, Tang Z, Cheng C, Tang S, Lin J, Huang M. J. Power Sources, 2012, 198:402.
[77] Lee Y S, Ju S H, Kim J H, Hwang S S, Choi J M, Sun Y K, Kim H, Scrosati B, Kim D W. Electrochem. Commun., 2012, 17:18.
[78] Duay J, Gillette E, Liu R, Lee S B. Physical Chemistry Chemical Physics, 2012, 14:3329.
[79] Wang K, Zhang X, Li C, Sun X, Meng Q, Ma Y, Wei Z. Adv. Mater., 2015, 27:7451.
[80] Ramasamy C, Palma J, Anderson M. J. Solid State Electrochem., 2014, 18:2903.
[81] Yuksel R, Sarioba Z, Cirpan A, Hiralal P, Unalan H E. ACS Appl. Mater. Interfaces, 2014, 6:15434.
[82] Huang C W, Wu C A, Hou S S, Kuo P L, Hsieh C T, Teng H. Adv. Funct. Mater., 2012, 22:4677.
[83] Dicarmine P M, Schon T B, McCormick T M, Klein P P, Seferos D S. Journal of Physical Chemistry C, 2014, 118:8295.
[84] Ketabi S, Lian K. Electrochim. Acta, 2013, 103:174.
[85] Pandey G P, Hashmi S A. J. Mater. Chem. A, 2013, 1:3372.
[86] Pandey G P, Hashmi S A. J. Power Sources, 2013, 243:211.
[87] Liu X, Wen Z, Wu D, Wang H, Yang J, Wang Q. J. Mater. Chem. A, 2014, 2:11569.
[88] Zhi J, Reiser O, Wang Y, Hu A. Nanoscale, 2016, 8:11976.
[89] Ma G, Dong M, Sun K, Feng E, Peng H, Lei Z. J. Mater. Chem. A, 2015, 3:4035.
[90] Angell C A, Liu C, Sanchez E. Nature, 1993, 362:137.
[91] Fenton D E, Parker J M, Wright P V. Polymer, 1973, 14:589.
[92] Tanaka R, Sakurai M, Sekiguchi H, Mori H, Murayama T, Ooyama T. Electrochim. Acta, 2001, 46:1709.
[93] Yang X Y, Chen L H, Li Y, Rooke J C, Sanchez C, Su B L. Chem. Soc. Rev., 2017, 46:481.
[94] 崔孟忠(Cui M Z), 李竹云(Li Z Y), 张洁(Zhang J), 冯圣玉(Feng S Y). 化学进展(Progress in Chemistry), 2008, 17(12):1987.
[95] 骆蓉(Luo R), 聂进(Nie J). 功能高分子学报(Journal of Function Polymer), 2004, 17(1):151.
[96] Armand M B. Fast Ion Transport in Solids. Amsterdam:North Houand, 1979. 131.
[97] Vallée A, Besner S, Prud' Homme J. Electrochim. Acta, 1992, 37:1579.
[98] Allcock H R. Soft Matter, 2012, 8:7521.
[99] Verma M L, Minakshi M, Singh N K. Electrochim. Acta, 2014, 137:497.
[100] Fonseca C P, Cezare T T, Neves S. J. Power Sources, 2002, 112:395.
[101] Francisco B E, Jones C, Lee S, Stoldt C R. Appl. Phys. Lett., 2012, 100:103902.
[102] Ulihin A S, Mateyshina Y G, Uvarov N F. Solid State Ionics, 2013, 251:62.
[103] Zhang Q, Scrafford K, Li M, Cao Z, Xia Z, Ajayan P M, Wei B. Nano Lett., 2014, 14:1938.
[104] 陈龙(Chen L), 池上森(Chi S S), 董源(Deng Y), 李丹(Li D), 张博晨(Zhang B C), 范丽珍(Fan L Z). 硅酸盐学报(Journal of the Chinese Ceramic Society), 2018, 46(1), doi:10.14062/j.issn.0454-5648.2018.01.03.
[105] 刘丽露(Liu L L), 戚兴国(Qi X G), 邵元骏(Shao Y J), 潘都(Pan D), 白莹(Bai Y), 胡勇胜(Hu S Y), 李泓(Li H), 陈立泉(Chen L Q). 储能科学与技术(Energy Storage Science and Technology), 2017, 6(5):961.
[1] Caiwei Wang, Dongjie Yang, Xueqing Qiu, Wenli Zhang. Applications of Lignin-Derived Porous Carbons for Electrochemical Energy Storage [J]. Progress in Chemistry, 2022, 34(2): 285-300.
[2] Jiasheng Lu, Jiamiao Chen, Tianxian He, Jingwei Zhao, Jun Liu, Yanping Huo. Inorganic Solid Electrolytes for the Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(8): 1344-1361.
[3] Yusen Ding, Pu Zhang, Hong Li, Wenhuan Zhu, Hao Wei. Research Status and Prospect of Li-Se Batteries [J]. Progress in Chemistry, 2021, 33(4): 610-632.
[4] Qi Yang, Nanping Deng, Bowen Cheng, Weimin Kang. Gel Polymer Electrolytes in Lithium Batteries [J]. Progress in Chemistry, 2021, 33(12): 2270-2282.
[5] Sha Tan, Jianzhong Ma, Yan Zong. Preparation and Application of Poly(3,4-ethylenedioxythiophene)∶Poly(4-styrenesulfonate)/Inorganic Nanocomposites [J]. Progress in Chemistry, 2021, 33(10): 1841-1855.
[6] Qiuyan Liu, Xuefeng Wang, Zhaoxiang Wang, Liquan Chen. Composite Solid Electrolytes with High Contents of Ceramics [J]. Progress in Chemistry, 2021, 33(1): 124-135.
[7] Zhuang Yan, Yaling Liu, Zhiyong Tang. Two Dimensional Electrically Conductive Metal-Organic Frameworks [J]. Progress in Chemistry, 2021, 33(1): 25-41.
[8] Dong Li, Yuying Zheng, Haoxiong Nan, Yanxiong Fang, Quanbing Liu, Qiang Zhang. Electrolyte for Solid Lithium-Sulfur Batteries with High Safety and High Specific Energy [J]. Progress in Chemistry, 2020, 32(7): 1003-1014.
[9] Zhan Wu, Xiaohan Li, Aowei Qian, Jiayu Yang, Wenkui Zhang, Jun Zhang. Electrochromic Energy-Storage Devices Based on Inorganic Materials [J]. Progress in Chemistry, 2020, 32(6): 792-802.
[10] Jiamiao Chen, Jingwen Xiong, Shaomin Ji, Yanping Huo, Jingwei Zhao, Liang Liang. All Solid Polymer Electrolytes for Lithium Batteries [J]. Progress in Chemistry, 2020, 32(4): 481-496.
[11] Jinglun Wang, Qin Ran, Chongyu Han, Zilong Tang, Qiduo Chen, Xueying Qin. Organosilicon Functionalized Electrolytes for Lithium-Ion Batteries [J]. Progress in Chemistry, 2020, 32(4): 467-480.
[12] Shaoming Qiao, Naibao Huang, Zhengyuan Gao, Shixian Zhou, Yin Sun. Nickel-Manganese Binary Metal Oxide as Electrode Materials for Supercapacitors [J]. Progress in Chemistry, 2019, 31(8): 1177-1186.
[13] Qingkai Zhang, Feng Liang, Yaochun Yao, Wenhui Ma, Bin Yang, Yongnian Dai. Sodium-Based Solid-State Electrolyte and Its Applications in Energy [J]. Progress in Chemistry, 2019, 31(1): 210-222.
[14] Bin Chi, Sanying Hou, Guangzhi Liu, Shijun Liao*. High Performance and High Power Density Membrane Electrode Assembly for Proton Exchange Membrane Fuel Cells [J]. Progress in Chemistry, 2018, 30(2/3): 243-251.
[15] Ruqin Liu, Zhirong Suo, Naizhen He, Shuang Chen, Ming Huang. Azo-Bridged Coupling Bisfurazan: Synthesis and Its Structure-Function Relationship Between Molecular Structure and Melting Point [J]. Progress in Chemistry, 2017, 29(5): 476-490.