中文
Announcement
More
Progress in Chemistry 2019, Vol. 31 Issue (1): 144-155 DOI: 10.7536/PC180313 Previous Articles   Next Articles

• Review •

Preparation and Performance of Superhydrophilic and Superoleophobic Membrane for Oil/Water Separation

Jing Yuan1, Fangfang Liao2, Yani Guo3, Liyun Liang1,**()   

  1. 1. Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
    2. China Railway Siyuan Survey and Design Group Co.,LTD. Wuhan 430063, China
    3. School of Material Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
  • Received: Revised: Online: Published:
  • Contact: Liyun Liang
  • About author:
    ** Corresponding author e-mail:
  • Supported by:
    The work was supported by the Open Foundation of Hubei Key Laboratory of Material Chemistry and Service Failure(2017MCF02)
Richhtml ( 136 ) PDF ( 2624 ) Cited
Export

EndNote

Ris

BibTeX

Superhydrophilic-superoleophobic oil/water separation membrane is a special membrane for water penetration and oil retention in separation process, which has advantage of antifouling by oil when dealing with off-shore oil spillages and oil-polluted water. This kind of membrane is very meaningful in practical application. In order to grasp recent development in superhydrophilic-superoleophobic oil/water separation membrane, firstly, the mechanism of oil/water separation is described based on the hydrostatic pressure and capillary force. Then, the preparation and properties research of superhydrophilic and superoleophobic metal-based membrane, stimulus-responsive polymeric membranes and substrate-free polymeric membrane for oil/water separation are comprehensively reviewed. Finally we summarize the current problems in the field of superhydrophilic-superoleophobic oil/water separation membrane and prospect the future development.

Fig.1 Schematic diagram of hydrophilic capillarity (a) and hydrophobic capillarity (b)
Fig.2 Schematic diagram of oil and water wetting modes. (a,d) When surfaces show superhydrophilic or superoleophobic properties, θa < 90° then ΔP < 0, water or oil can permeate through the mesh; (b, c) When surfaces show superhydrophobic or superoleophobic properties, θa > 90°,△P > 0,water or oil cannot permeate through mesh[10]
Scheme 1 Synthetic scheme and chemical structure of cross-linked ionic P(DMAEMA-co-VBC) copolymer. The m and n represent the unreacted contents of DMAEMA and VBC, respectively. The x is the ionic cross-linked part generated through the Menshutkin reaction. These m, n, and x values are changed by feed ratios of each monomer into the iCVD chamber[20]
Fig.3 Crossflow filtration in fish gills and bioinspired crossflow collection of spilled oil. (a) Gradient gill structure in suspension-feeding fishes; (b) Illustration of crossflow filtration in fish gills; (c) Gradient membrane that consists of five meshes arranged in descending order of pore size from the bottom to the top (150, 120, 90, 60, and 30 μm); (d) Large- (bottom) and small-pore (top) regions of the gradient membrane. Scale bars: 300 μm; (e) Ultrathin Co3O4 nanosheets coated on the wire surface, which form numerous enclosed cells (inset). Scale bars: 2 and 1 μm (inset); (f) Illustration of bioinspired crossflow collection of spilled oil[15]
Fig.4 Dual-channel separation device for continuous oil/water separation, an 50:50% v/v mixture of n-hexadecane/water was continuously pumped into the separation[37]
Fig.5 (a, b) SEM images of glasses coated with suspension A; (c, d) SEM images of glasses coated with suspension B; (e) Wetting behavior of different surfaces of time-sequence images of hexadecane (dyed red) and water (dyed blue). Droplet size about 6 μL, dropped from a height of 4 cm; (f) Schematic of short-chain fluoride repels the nonpolar oil and whereas the hydrophilic units[41]
Fig.6 Oil wettability of the as-prepared fiber membrane in aqueous media with different pH values: (a) Images of an oil (n-hexane) droplet on the fiber membrane in acidic water (pH=3) with an OCA of 152°(left) and a sliding angle of 4° (right); (b) Images of an oil (n-hexane) droplet on the as-prepared membrane in neutral water (pH=7) with an OCA of 146° in a horizontal state (left) and a tilted state (right); (c, d) schematic description of the oil wetting behavior on the fiber membrane surface in pH=3 and pH=7 water, respectively[44]
Fig.7 Images of CO2-controlled oil/water separation: (a) water/chloroform (red) separated by dried membrane; (b) water/hexane (yellow) separation by CO2-treated membrane; (c) schematic illustration of CO2 controllable water/oil separation using poly(St-co-DEA)-HIPE membrane. The membrane wettability could be reversibly switched by CO2 treatment between hydrophobic/superoleophilic (left) and hydrophilic/underwater superoleophobic (right), which allows the filtration of oil and water, respectively[59]
Fig.8 Filtration of the O/W (1% v/v hexadecane) emulsion: (a) filtration setup; (bd) optical images of (b) the feed emulsion, (c) permeate from 0% strain PCL membrane, and (d) permeate from 80% strain PCL membrane[82]
Fig.9 (a) SEM images of ChNWs; (b) Illustration of the preparation of P(NIPAAm-co-NMA)/ChNWs nanofibrous membranes; (c) Illustration of the cross-linked nanofibrous membranes; (d) Optical photographs showing the robust flexibility of ChNWs-10% membranes[77]
Table 1 Selected preparation and studies on superhydrophilic and under water superoleophobic membrane based on metal mesh for oil/water separation
Preparation method WCA
(in air)
(°)
OCA
(in water)
(°)
Separation
efficiency for
water permeating
(%)
Break-
through
Pressure
(kPa)
Separation
cycle
Advantages and
disadvantages
ref
The SSM was immersed in pre-gel solution mixed with(acrylamide)AM then photo-initiated 155.3 ± 1.8 > 99 50 Easy to manipulate, but energy consumption 14
Depositing cross-linked polymer on SSM by iCVD process 38.3± 3.5 136.3 ± 1.4 99.5, high flux of 232000 LMH 1.5 30 High water flux, but needed special equipment 20
Coating CS-SiO2-GA hybrid materials on SSM 0 159 > 99 20 Simple to prepare, defect in surface structure 21
The SSM was immersed in MTMS and hydrochloric acid(4:1)mixture,then dried in air < 10 163 for mesh 400 99.99, water flux of
71600 LMH
Non-fluorine, simple me-thod, but poor durability 22
Depositing PDDA/HNTs coating
on SSM via LBL assembly method
0 151.5 > 97 1.17 20 Conveniently for structure building, but time-consuming 23
Hydrophilic GO was coated on SSM via immersing in solution < 10 > 150 > 98 for light oil and water,> 90 for heavy oil 50 Easy to obtain, but efficiency is not so good 30
PANI and PPy coated on SSM via a simple modified dilute polymerization 45 > 150 > 98, water flux of 36000LMH 70 Excellent durability, but much acid pollution during fabrication 31
The Ni mesh was sintered in tube furnace at 1000 ℃ in air for 10 min, then quenched at room temperature 0 153 > 99, water flux of 54000
LMH
2.352 20 Oil-contaminated NiO/Ni mesh can be cleaned by burning in air, but needed special equipment 32
Electrochemical deposition method was used for in situ growth of Cu3(PO4)2 nanosheet on Cu mesh 0 158 4000±100LMH Excellent water-retaining capacity, but needed special equipment 33
The poly(sodium methacrylate) brush-es were created via ARGET-ATRP method, then coated on mesh 6 164 99.9, water flux of 180000LMH Can separate large volume of mixture, but needed special synthetic method 37
Cellulose hydrogel-coated mesh was prepared through dip-coating and heat-ing process 0 151 > 98.9, water flux of 125885 LMH 1.94 60 Simple, low-cost and green fabrication, but pores of mesh changed 39
[1]
Peterson C H, Rice S D, Short J W, Esler D, Bodkin J L . Science., 2003,302:2082. https://pubmed.ncbi.nlm.nih.gov/14684812/

doi: 10.1126/science.1084282 pmid: 14684812
[2]
党钊 (Dang Z), 刘利彬 (Liu L B), 向宇 (Xiang Y), 方文元 (Fang W Y) . 化工进展( Chemical Industry and Engineering Process), 2016,35(S1):216.
[3]
Chu Z L, Feng Y J, Seeger S . Angew. Chem. Int. Ed., 2015,54:2328.
[4]
曾新娟 (Zeng X J), 王丽 (Wang L), 皮丕辉 (Pi P H), 程江 (Cheng J), 文秀芳 (Wen X F), 钱宇 (Qian Y) . 化学进展( Progress in Chemistry), 2018,30(1):73. http://manu56.magtech.com.cn/Jwk3_hxjz/CN/10.7536/PC170828

doi: 10.7536/PC170828
[5]
Wang K, Wubulikasimu Y M, Jayaprakash S, Liu Z Y . Nanosale, 2017,9:9018.
[6]
杨皓程 (Yang H C), 陈一夫 (Chen Y F), 叶辰 (Ye C), 万灵书 (Wan L S), 徐志康 (Xu Z K) . 化学进展( Progress in Chemistry), 2015,27(08):1014.
[7]
Jung Y C, Bhushan B . Langmuir, 2009,25:14165.
[8]
袁腾 (Yuan T) . 华南理工大学博士论文,( Doctoral Dissertation of South China University of Technology), 2015.
[9]
Liu B, Lange F F . J Colloid Interface Sci., 2006,298:899.
[10]
Raturi P, Yadav K, Singh J P . ACS Appl.MaterInterfaces, 2017,9:6007.
[11]
Gupta R K, Dunderdale G J, England M W, Hozumi A . J. Mater. Chem. A, 2017,5:16025.
[12]
Li L, Wang Y J, Gallaschun C, Risch T, Sun J N . J. Mater. Chem., 2012,22:16719.
[13]
Li Y, Zheng X, Yan Z H, Tian D L, Ma J M, Zhang X F, Jiang L. ACS Appl . Mater.Interfaces, 2017,9:29177.
[14]
Xue Z, Wang S T, Lin L, Chen L, Liu M J, Feng L, Jiang L . Adv.Mater, 2011,23:4270.
[15]
Dou Y H, Tian D L, Sun Z Q, Liu Q N, Zhang N, Kim J H, Jiang L, Dou S X . ACS Nano, 2017,11:2477.
[16]
Wu L, Li L X, Li B C, Zhang J P, Wang A Q . ACS Appl.Mater.Interfaces, 2015,7:4936.
[17]
Wang Y S, Wang Y, Xia H, Wang G, Zhang Z Y . Nanoscale, 2016,8:17451.
[18]
Ahmad A L, Majid M A, Ooi B S . Desalination, 2011,268:266.
[19]
Qian D L, Chen D Y, Li N J, Xu Q F, Li H, He J H, Lu J M . J. Membrane Sci., 2018,554:16.
[20]
Joo M, Shin J, Kim J, You J B, Yoo Y, Kwak M J, Oh M S, Im S G . J. Am. Chem. Soc., 2017,139:2329.
[21]
Liu J, Li P, Chen L, Feng Y, He W X, Yan X H, Lü X M . Surface and Coatings Technology, 2016,307:171.
[22]
Jiang L, Tang Z, Park-Lee K J, Hess D W, Breedveld V . Separation and Purification Technology, 2017,184:394.
[23]
Hou K, Zeng Y C, Zhou C L, Chen J H, Wen X F, Xu S P, Cheng J, Lin Y, Pi P . Applied Surface Science, 2017,416:344.
[24]
Zhao X T, Su Y L, Liu Y N, Li Y F, Jiang Z Y . ACS Appl.Mater.Interfaces, 2016,8:8247.
[25]
Huang Y, Li H, Wang L, Qiao Y L, Tang C B, Jung C, Yoon Y M, Li S G, Yu M. Adv. Mater . Interfaces, 2015,2:1400433.
[26]
Li F, Yu Z X, Shi H, Yang Q B, Chen Q, Pan Y, Zeng G Y, Yan L . Chemical Engineering Journal, 2017,322:33.
[27]
Liu Y Q, Zhang Y L, Fu X Y, Sun H B . ACS Appl.Mater.Interfaces, 2015,7:20930.
[28]
Yun J J, Khan F A, Baik S. . ACS Appl.Mater.Interfaces, 2017,9:16694.
[29]
Zeng G Y, He Y, Ye Z B, Yang X, Chen X, Ma J, Li F . Ind. Eng. Chem. Res., 2017,56:10472.
[30]
Dong Y, Li J, Shi L, Wang X B, Guo Z G, Liu W M . Chem. Commun., 2014,50:5586.
[31]
Liu M M, Li J, Shi L, Guo Z G . RSC Adv., 2015,5:33077.
[32]
Yu Z, Yun F F, Gong Z, Yao Q, Dou S, Liu K, Jiang L, Wang X . J. Mater. Chem.A, 2017,5:10821.
[33]
Zhang S, Jiang G, Gao S, Jin H, Zhu Y, Zhang F, Jin J . ACS Nano, 2018,12:795.
[34]
Zhang X J, Zhao Y X, Mu S J, Jiang C M, Song M Q, Fang Q R, Xue M, Qiu S L, Chen B L . ACS Appl.Mater.Interfaces, 2018,10:17301.
[35]
Luo Z Y, Lyu S S, Fu Y X, Heng Y, Mo D C . Applied Surface Science, 2017,409:431.
[36]
Zhu H G, Chen D Y, Li N J, Xu Q F, Li H, He J H, Lu J M . Applied Catalysis B: Environmental, 2017,200:594.
[37]
Dunderdale G J, Urata C, Sato T, England M W, Hozumi A. ACS Appl . Mater.Interfaces, 2015,7:18915.
[38]
Li J, Long Y F, Xu C C, Tian H F, Wu Y X, Zha F . Applied Surface Science, 2018,433:374.
[39]
Ao C G, Hu R, Zhao J Q, Zhang X F, Li Q Y, Xia T, Zhang W, Lu C H . Chemical Engineering Journal, 2018,338:271.
[40]
Yang J, Yin L T, Tang H, Song H J, Gao X N, Liang K, Li C S . Chemical Engineering Journal, 2015,268:245.
[41]
Li F R, Wang Z R, Huang S C, Pan Y L, Zhao X Z . Adv. Funct. Mater., 2018,28:1706867.
[42]
Xia F, Feng L, Wang S T, Sun T L, Song W L, Jiang W H, Jiang L . Adv.Mater, 2006,18:432.
[43]
Cai Y H, Chen D Y, Li N J, Xu Q F, Li H, He J H, Lu J M . J. Membrane Sci, 2018,555:69.
[44]
Li J J, Zhou Y N, Luo Z H . ACS Appl.Mater.Interfaces, 2015,7:19643.
[45]
Li J J, Zhu L, Luo Z H . Chemical Engineering Journal, 2016,287:474.
[46]
Li J J, Zhou Y N, Luo Z H . Chemical Engineering Journal, 2017,322:693.
[47]
Cheng B W, Li Z J, Li Q X, Ju J G, Kang W M, Naebe M . J. Membrane Sci., 2017,534:1.
[48]
Li J J, Zhou Y N, Jian Z D, Luo Z H . Langmuir, 2016,32:13358.
[49]
Chen W B, He H, Zhu H X, Cheng M X, Li Y H, Wang S F . Polymers, 2018,10:592.
[50]
Lei Z W, Zhang G Z, Deng Y H, Wang C Y . ACS Appl.Mater.Interfaces, 2017,9:8967.
[51]
Zhou Y N, Li J J, Luo Z H . Ind. Eng. Chem.Res., 2015,54:10714.
[52]
Ou R W, Wei J, Jiang L, Simon G P, Wang H T . Environ. Sci. Technol., 2016,50:906.
[53]
Zhang W F, Liu N, Zhang Q D, Qu R X, Liu Y N, Li X Y, Wei Y, Feng L, Jiang L . Angew. Chem. Int. Ed., 2018,57:5740.
[54]
Wu J D, Zhang C, Jiang D J, Zhao S F, Jiang Y L, Cai G Q, Wang J P . RSC Adv., 2016,6:24076.
[55]
Li T T, Shen J, Zhang Z, Wang S, Wei D Y . RSC Adv., 2016,6:40656.
[56]
Abraham S, Kumaran S K, Montemagno C D . RSC Adv., 2017,7:39465.
[57]
Che H L, Huo M, Peng L, Fang T, Liu N, Feng L, Wei Y, Yuan J Y . Angew. Chem. Int. Ed., 2015,54:8934.
[58]
Chen X, He Y, Fan Y, Yang Q B, Yang X, Zeng G Y . J. Mater. Sci., 2018,53:516.
[59]
Lei L, Zhang Q, Shi S X, Zhu S P . Langmuir, 2017,33:11936.
[60]
Ma W J, Samal S K, Liu Z C, Xiong R H, de Smedt S C, Bhushan B, Zhang Q L, Huang C B . J. Membrane Sci., 2017,537:128.
[61]
Gondal M A, Sadullah M S, Qahtan T F, Dastageer M A, Baig U, Mckinley G H . Sci. Rep., 2017,7:1686.
[62]
Kang H J, Liu Y Y, Lai H, Yu X Y, Cheng Z J, Jiang L . ACS Nano, 2018,12:1074.
[63]
Tian D L, Zhang X F, Tian Y, Wu Y, Wang X, Zhai J, Jiang L . J. Mater. Chem., 2012,22:19652.
[64]
Song S, Yang H, Zhou C L, Cheng J, Jiang Z B, Lu Z, Miao J . Chemical Engineering, 2017,320:342.
[65]
Wang Y F, Lai C L, Wang X W, Liu Y, Hu H W, Guo Y J, Ma K K, Fei B, Xin J H . ACS Appl.Mater. Interfaces, 2016,8:25612.
[66]
Hu J T, Gao Q H, Xu L, Wang M L, Zhang M J, Zhang K, Liu W H, Wu G Z . J. Mater. Chem. A, 2018,6:6085.
[67]
Chen X, He Y, Fan Y, Yang Q B, Yang X, Zeng G Y, Zhang L Y . J. Chem. Technol. Biotechnol., 2018,93:476.
[68]
Du L, Quan X, Fan X F, Chen S, Yu H T . Separation and Purification Technology, 2018,5:32.
[69]
Kung C H, Zahiri B, Sow P K, Mérida W . Applied Surface Science, 2018,444:15.
[70]
Zhu Y Z, Xie W, Zhang F, Xing T L, Jin J. ACS Appl . Mater.Interfaces, 2017,9:9603.
[71]
Ju J P, Wang T M, Wang Q H . Colloids and Surfaces A: Physicochem. Eng.Aspects, 2015,481:151.
[72]
Zhang W B, Zhu Y Z, Liu X, Wang D, Li J Y, Jiang L Jin J , Angew. Chem. Int. Ed., 2014,53:856.
[73]
Zhou Q, Lei X P, Li J H, Yan B F, Zhang Q Q . Desalination, 2014,337:6.
[74]
Zhao X T, Su Y L, Chen W J, Peng J M, Jiang Z Y . J. Membrane Sci., 2012,415:824.
[75]
Panatdasirisuk W, Liao Z W, Vongsetskul T, Yang S . Langmuir, 2017,33:5872.
[76]
Obaid M, Tolba G M K, Motlak M, Fadali O A, Khalil K A, Almajid A A, Kim B, Barakat N A M . Chemical Engineering Journal, 2015,279:631.
[77]
Wu J X, Zhang J, Kang Y L, Wu G, Chen S C, Wang Y Z . ACS Sustainable Chem. Eng., 2018,6:1753.
[78]
Song Y Z, Kong X, Yin X, Zhang Y, Sun C C, Yuan J J, Zhu B K, Zhu L P . Colloids and Surfaces a: Physicochemical and Engineering Aspects, 2017,522:585.
[79]
Rajasekhar T, Babu P V, Gopinath J, Sainath A V S, Reddy A V R . J. Appl. Polym. Sci., 2017,134:45132.
[80]
Yang X, He Y, Zeng G Y, Chen X, Shi H, Qing D Y, Li F, Chen Q . Chemical Engineering Journal, 2017,321:245.
[81]
Yuan T, Meng J Q, Hao T Y, Wang Z H, Zhang Y F . ACS Appl. Mater. Interfaces, 2015,7:14896.
[82]
Wang J, Hou L A, Yan K, Zhang L, Yu Q J . J. Membrane Sci., 2018,547:156.
[83]
Tan L L, Han N, Qian Y Q, Zhang H R, Gao H K, Zhang L F, Zhang X X . J. Membrane Sci., 2018,564:712.
[84]
Obaid M, Yang E, Kang D, Yoon M, Kim I S . Separation and Purification Technology, 2018,200:284.
[85]
Gao Y, Li Z, Cheng B, Su K . Separation and Purification Technology, 2018,192:262.
[1] Wu Mingming, Lin Kaige, Aydengul Muhyati, Chen Cheng. Research on the Construction and Application of Superwetting Materials with Photothermal Effect [J]. Progress in Chemistry, 2022, 34(10): 2302-2315.
[2] Xiaojian Li, Haijun Zhang, Saisai Li, Jun Zhang, Quanli Jia, Shaowei Zhang. Preparation of Superhydrophilic and Oleophobic Materials and Their Oil-Water Separation Properties [J]. Progress in Chemistry, 2020, 32(6): 851-860.
[3] Jihao Zuo, Jiahui Chen, Xiufang Wen, Shoupin Xu, Pihui Pi. Advanced Materials for Separation of Oil/Water Emulsion [J]. Progress in Chemistry, 2019, 31(10): 1440-1458.
[4] Jun Zhang, Lei Han, Yuan Zeng, Liang Tian, Haijun Zhang. Selective Oil/Water Separation Materials [J]. Progress in Chemistry, 2019, 31(1): 134-143.
[5] Jianwen Shao, Fuchao Yang, Zhiguang Guo. The Application of Biomimetic Superoleophobic Materials under Harsh Operating Conditions [J]. Progress in Chemistry, 2018, 30(12): 2003-2011.
[6] Xinjuan Zeng, Li Wang, Pihui Pi, Jiang Cheng, Xiufang Wen, Yu Qian. Development and Research of Special Wettability Materials for Oil/Water Separation [J]. Progress in Chemistry, 2018, 30(1): 73-86.
[7] Yang Wolong, Ji Xianbing, Xu Jinliang. Superhydrophilic Surfaces: From Nature to Biomimetics to Application [J]. Progress in Chemistry, 2016, 28(6): 763-772.
[8] Zhan Yuanyuan, Liu Yuyun, Lv Jiuan, Zhao Yong, Yu Yanlei. Photoresponsive Surfaces with Controllable Wettability [J]. Progress in Chemistry, 2015, 27(2/3): 157-167.
[9] Si Fangfang, Zhang Liang, Zhao Ning, Chen Li, Xu Jian. Superhydrophilic Surfaces: Progress in Preparation Method and Application [J]. Progress in Chemistry, 2011, 23(9): 1831-1840.
[10] Liu Xiangmei He Junhui. Progress in Antifogging Technology —— from Surface Engineering to Functional Surfaces [J]. Progress in Chemistry, 2010, 22(0203): 270-276.