中文
Announcement
More
Progress in Chemistry 2019, Vol. 31 Issue (1): 156-166 DOI: 10.7536/PC180309 Previous Articles   Next Articles

• Review •

Chemical and Physical Mechanism of Water Resistance for Thermoplastic Starch

Dongdong Zha1, Bin Guo1,2,3,**(), Bengang Li1, Peng Yin1, Panxin Li2,3   

  1. 1. College of Science, Nanjing Forestry University, Nanjing 210037, China
    2. Agricultural and Forest Products Processing Academician Workstation of Henan Province, Luohe 462600, China
    3. Post-Doctoral Research Center of Nanjiecun Group, Luohe 462600, China
  • Received: Revised: Online: Published:
  • Contact: Bin Guo
  • About author:
    ** Corresponding author e-mail:
  • Supported by:
    The work was supported by the Jiangsu Government Scholarship for Overseas Studies; The Nanjing Forestry University Young Top Talent Program; The Natural Science Foundation of Jiangsu Province(BK20140967)
Richhtml ( 18 ) PDF ( 1610 ) Cited
Export

EndNote

Ris

BibTeX

The shortage of oil resources and the need to reduce the environmental burden caused by petroleum-based polymers have driven the development and production of biodegradable materials. In recent decades, natural polymers have replaced current synthetic polymers due to their non-toxicity, biodegradability, and biocompatibility. Starch has been extensively studied for the manufacture of biodegradable composites due to its reproducibility, biodegradability, low cost, and availability, which has been widely used for applications in agriculture, alimentary, medicine and packaging industry. However, the polyhydroxyl structure of starch gives it strong hydrophilicity, and the moisture sensitivity limits their mechanical properties and affects their application. In this paper, mainly from the perspective of improving the physical and chemical effects of thermoplastic starch, the research works in recent years on improving the water resistance of thermoplastic starch material and reducing its sensitivity to environmental humidity are summarized. The related factors affecting the water resistance and the methods of improvement are introduced, and the research trend in this field is also proposed.

Fig.1 Plasticizing mechanism of starch
Fig.2 The esterification mechanism of acetic acid, maleic anhydride, and caprylyl chloride with starch
Fig.3 Schematic illustrations of citric acid, glycerol, starch and possible structure of crosslinked system[24]
Fig.4 Schematic representation of hydrogen bonding promoted by CN in S/PVA/CN nanocomposite[75]
[1]
Xie F W, Pollet E, Peter J . Luc Avérous H. Prog. Polym. Sci., 2013,38(10/11):1590.
[2]
Liu T, Koranteng E, Wu Z S, Wang X, Wu Q X . J. Appl. Polym. Sci., 2017,134:45400.
[3]
Teixeira E D M, Pasquini D, Curvelo A A S, Corradini E, Belgacem M N, Dufresne A . Carbohydr. Polym., 2009,78(3):422.
[4]
Yu L, Christie G . J. Mater. Sci., 2005,40(1):111.
[5]
Lecorre D, Bras J, Dufresne A . J. Nanopart. Res., 2011,13(12):7193.
[6]
Nafchi A M, Moradpour M, Saeidi M, Alias A K . Starch-Stärke, 2013,65(1/2):61.
[7]
Bastioli C . Starch-Stärke, 2015,53(8):351.
[8]
Magalhães N F, Andrade C T . Polimeros-ciencia E Tecnologia, 2013,23(3):366.
[9]
Sorrentino A, Gorrasi G, Vittoria V . Trends Food Sci.Technol., 2007,18(2):84.
[10]
Zhou J, Zhang J, Ma Y, Tong J. Carbohydr. Polym ., 2008,74(3):405.
[11]
Detduangchan N, Wittaya T . Int. J. Chem. Mol. Nucl. Mater. Metall. Eng., 2011,5(9):829.
[12]
He G J, Liu Q, Thompson M R . Starch-Stärke, 2013,65(3/4):304.
[13]
Detduangchan N, Sridach W, Wittaya T . Int. Food Res.J., 2014: 1189.
[14]
Liu Z, Dong Y, Men H, Jiang M, Tong J, Zhou J . Carbohydr.Polym, 2012,89(2):473.
[15]
Adak S, Banerjee R . Carbohydr.Polym, 2016,150:359.
[16]
Morán J I, Cyras V P, Vázquez A . J. Polym. Env., 2013,21(2):395.
[17]
王礼建 (Wang L J), 董亚强 (Dong Y Q), 杨政 (Yang Z), 郭斌 (Guo B), 李本刚 (Li B G), 李盘欣 (Li P X). 材料导报( Materials Review), 2015,29(17):63.
[18]
Zhang Y R, Zhang S D, Wang X L . Carbohydr. Polym., 2009,78(1):157.
[19]
Teramoto N, Motoyama T, Yosomiya R, Shibata M . Eur. Polym. J., 2003,39(2):255.
[20]
Chaudhary A L, Torley P J, Halley P J, McCaffery N, Chaudhary D S . Carbohydr. Polym., 2009,78(4):917.
[21]
Teramoto N, Motoyama T, Yosomiya R, Shibata RM . Eur. Polym. J., 2002,38(7):1365.
[22]
Yeh J T, Hou Y J, Cheng L, Wang Y Z, Yang L, Wang C K . Carbohydr. Polym., 2015,127:135.
[23]
薛灿( Xue C), 银鹏 (Yin P), 姜子邓牙 (Jiang Z D Y), 郭斌 (Guo B), 李盘欣 (Li P X) . 塑料( Plastics), 2017, ( 5):46.
[24]
Seligra P G, Medina J C, Famá L, Goyanes S . Carbohydr.Polym, 2016,138:66.
[25]
Ryu S Y, Rhim J W, Roh H J, Kim S S . LWT Food Sci.Technol., 2002,35(8):680.
[26]
Gao P, Wang F, Gu F, Ning J, Liang J, Li N B, Richard D . Carbohydr. Polym, 2016,157:1254.
[27]
Cao Q, Zhang Y, Chen W, Meng X H, Liu B J . Int. J. Biol.Macromol., 2017,106:1307.
[28]
Cai Z J, Xu Y, Yang H Z, Jian R J, Liu Y P . Mater. Sci. Eng.C Mater. Biol. Appl., 2016,58:757.
[29]
Mendes J F, Paschoalin R T, Carmona V B, Sena Neto A R, Marques A C P, Marconcini J M, Mattoso L H C, Medeiros E S, Oliveira J E . Carbohydr. Polym., 2016,137:452.
[30]
Lopez O, Garcia M A, Villar M A, Gentili A, Rodriguez M S, Albertengo L . LWT Food Sci. Technol., 2014,57(1):106.
[31]
Dang K M, Yoksan R . Carbohydr.Polym, 2015,115(115):575.
[32]
Bangyekan C, Aht-Ong D, Srikulkit K . Carbohydr.Polym, 2006,63(1):61.
[33]
Bergel B F, Luz L M D, Santana R M C . Prog. Org. Coat., 2017,106:27.
[34]
Soares F C, Yamashita F, Müller C M O, Pires A T N . Polym. Test., 2013,32(1):94.
[35]
Fabra M J, Lopez-Rubio A, Lagaron J M . Food Hydrocolloids, 2013,32(1):106.
[36]
Fabra M J, Lopez-Rubio A, Lagaron J M . J. Food Eng., 2014,127:1.
[37]
Pérez-Masiá R, Lagaron J M, Lopez-Rubio A . Food Bioprocess Technol., 2015,8(2):459.
[38]
Li D, Xia Y . Adv.Mater, 2004,16(14):1151.
[39]
Fabra M J, Lopez-Rubio A, Lagaron J M . Food Hydrocolloids, 2015,44:292.
[40]
Fabra M J, López-Rubio A, Ambrosio-Martín J, Lagaron J M . Food Hydrocolloids, 2016,61:261.
[41]
Fabra M J, López-Rubio A, Sentandreu E, Lagaron J M . Starch-Stärke, 2016,68(7/8):603.
[42]
Fabra M J, López-Rubio A, Cabedo L, Lagaron J M . J. Colloid Interface Sci., 2016,483:84.
[43]
Chung Y L, Ansari S, Estevez L, Hayrapetyan S, Giannelis E P, Lai H . Carbohydr.Polym, 2010,79(2):391.
[44]
Goudarzi V, Shahabi-Ghahfarrokhia I, Babaei-Qazvini A . Int. J. Biol. Macromol., 2016,95:306.
[45]
Tang S, Peng Z, Xiong H, Tang H . Carbohydr.Polym, 2008,72(3):521.
[46]
Ge X, Li H, Wu L, Li P, Mu X D, Jiang Y J . J. Appl. Polymerence, 2017,134(22):44910.
[47]
Soykeabkaew N, Laosat N, Ngaokla A, Yodsuwan N, Tunkasiri T . Compos. Sci. Technol., 2012,72(7):845.
[48]
Sanhawong W, Banhalee P, Boonsang S, Kaewpirom S . Ind. Crops Prod., 2017,108:756.
[49]
Santana J S, Do Rosário J M, Pola C C, Otoni C G, De Fátima Ferreira Soares N, Camilloto G P, Cruz R S . J. Appl. Polym. Sci., 2017,134(12):44637.
[50]
Prachayawarakorn J, Hanchana A . Starch-Stärke, 2016,69(3/4):1600113.
[51]
Guo B, Wang L J, Yin P, Li B G, Li P X . J. Thermoplast. Compos. Mater., 2017,30(4):564.
[52]
唐皞 (Tang H), 姜海天 (Jiang H T), 王礼建 (Wang L J), 范磊 (Fan L), 郭斌 (Guo B), 李盘欣 (Li P X), 张齐生 (Zhang Q S) . 塑料工业( China Plastics Industry), 2013,41(9):110.
[53]
郭斌 (Guo B), 查东东 (Zha D D), 薛灿 (Xue C), 银鹏 (Yin P), 李盘欣 (Li P 功能高分子学报( Journal of Functional Polymers), 2018,31(2):68.
[54]
Moran D A, Soares J AB P . Can.J. Chem. Eng. 2017,95(10):1901.
[55]
Cyras V P, Manfredi L B, Ton-that M T, Vázquez A . Carbohydr. Polym., 2008,73(1):55.
[56]
Tang X, Alavi S, Herald T J . Cereal Chem., 2008,85(3):433.
[57]
Azeredo H M C D . Food Res. Int., 2009,42(9):1240.
[58]
Fukushima K, Tabuani D, Camino G . Mater. Sci. Eng.C, 2012,32(7):1790.
[59]
Müller C M, Laurindo J B, Yamashita F . Carbohydr.Polym, 2012,89(2):504.
[60]
Romero-bastida C A, Tapia-blácido D R, Méndez-montealvo G, Bello-Pérez L A, Velázquez G, Alvarez-Ramirezd J . Carbohydr. Polym., 2016,152:351.
[61]
Olivato J B, Marini J, Yamashita F, Pollet E, Grossmann M V, Avérous L . Mater. Sci. Eng. C Biol. Appl., 2017,70(Pt 1):296.
[62]
Kaewtatip K, Tanrattanakul V . Mater.Des, 2012,37:423.
[63]
Mbey J A, Hoppe S, Thomas F . Carbohydr.Polym, 2012,88(1):213.
[64]
Oleyaei S A, Zahedi Y, Ghanbarzadeh B, Moayedi A A . Int. J. Biol. Macromol., 2016,89:256.
[65]
Oleyaei S A, Almasi H, Ghanbarzadeh B, Moayedi A A . Carbohydr. Polym., 2016,152:253.
[66]
Guz L, Famá L, Candal R, Goyanes S . Carbohydr. Polym., 2017,157:1611.
[67]
Müller P, Renner K, Móczó J, Fekete E, Pukánszky B . Carbohydr. Polym., 2014,102(1):821.
[68]
Saetun V, Chiachun C, Riyajan S A, Kaewtatip K . Polym.Compos, 2017,38(6):1063.
[69]
Bénézet J C, Stanojlovic-davidovic A, Bergeret A, Ferry L, Crespy A . Ind. Crops Prod., 2012,37(1):435.
[70]
Li S Y, Wang H Y, Chen C C, Li X Y, Deng Q Y, Gong M, Li D G . J. Appl. Polym. Sci., 2017,134(47):45530.
[71]
He R, Niu F, Chang Q . Surf. Interface Anal., 2017,50(1):73.
[72]
Goffin A L, Raquez J M, Duquesne E, Siqueira G, Habibi Y, Dufresne A, Dubois P . Biomacromolecules, 2011,12(7):2456.
[73]
Gonzã l K, Retegi A, Gonzãlez A, Eceiza A, Gabilondo N . Carbohydr. Polym., 2015,117(117):83.
[74]
Pelissari F M, Andrade-Mahecha M M, Sobral P J D A, Menegalli F C . J. Colloid Interface Sci., 2017,505:154.
[75]
Frone A N, Nicolae C A, Gabor R A, Panaitescu DM . Polym. Degrad. STab., 2015,121(11):385.
[76]
Slavutsky A M, Bertuzzi M A . Carbohydr. Polym., 2014,110(18):53.
[77]
Montero B, Rico M, Rodríguez-Llamazares S, Barral L, Bouza R . Carbohydr Polym, 2016,157:1094.
[78]
Ghanbarzadeh B, Almasi H, Entezami A A . Ind. Crops Prod., 2011,33(1):229.
[79]
Funke U, Bergthaller W, Lindhaue M . Polym. Degrad. STab., 1998,59(1/3):293.
[80]
Bhat R, Abdullah N, Din R H, Tay G S . J. Food Eng., 2013,119(4):707.
[81]
Spiridon I, Teaca C A, Bodirlau R . J. Mater. Sci., 2011,46(10):3241.
[82]
Kaewtatip K, Thongmee J . Mater.Des, 2013,49:701.
[83]
Bodirlau R, Teaca C A, Spiridon I . Composites Part B, 2013,44(1):575.
[84]
Dang K M, Yoksan R . Composites Part 2016,150:40.
[85]
Lazaridou A, Biliaderis C G . J. Cereal Sci., 2007,46(2):101.
[86]
Sagnelli D, Kirkensgaard J J K, Giosafatto C V L, Ogrodowicz N, Kruczała K, Mikkelsen M S, Maigret J E, Lourdin D, Mortensen K, Blennow A . Carbohydr.Polymers, 2017,172:237.
[87]
Ortega-Toro R, Collazo-Bigliardi S, Talens P, Chiralt A . J. Appl. Polym. Sci., 2015,133(2):42220
[88]
Ninago M D, López O V, Lencina M M, Garcia M A, Andreucetti N A, Ciolino A E, Villar M A . Carbohydr. Polym., 2015,134:205.
[89]
Tachaphiboonsap S, Jarukumjorn K . Adv. Mater. Res., 2013,747:67.
[90]
Karagoz S, Ozkoc G . Polym. Eng. Sci., 2013,53(10):2183.
[91]
Akrami M, Ghasemi I, Azizi H, Karrabi M, Seyedabadi M . Carbohydr.Polym, 2016,144:254.
[92]
Müller C M O, Pires A T N, Yamashita F . J. Braz. Chem. Soc., 2012,23(3):426.
[93]
Zeng J B, Jiao L, Li Y D, Srinivasan M, Li T, Wang Y Z . Carbohydr. Polym., 2011,83(2):762.
[94]
Li J, Luo X, Lin X, Zhou Y . Starch-Stärke, 2013,65(9/10):831.
[95]
Tian H, Yan J, Rajulu A V, Xiang A, Luo X . Int. J. Biol. Macromol., 2016,96:518.
[96]
郭斌 ( Guo B), 王礼建 (Wang L J), 董亚强 (Dong Y Q), 李本刚 (Li B G), 范磊 (Fan L), 李盘欣 (Li P X) . 高分子材料科学与工程( Polymer Materials Science and Engineering), 2015,31(6):112.
[97]
Oromiehie A R, Lari T T, Rabiee A . J. Appl. Polym. Sci., 2012,127(2):1128.
[98]
Sabetzadeh M, Bagheri R, Masoomi M . J. Appl. Polym. Sci., 2012,126(S1):E63.
[99]
Raee E, Kaffashi B . J. Appl. Polym. Sci., 2017,135(4):45740.
[100]
Schmitt H, Prashantha K, Soulestin J, Lacrampe M F, Krawczak P. . Carbohydr.Polym, 2012,89(3):920.
[101]
González K, Martin L, González A, Retegi A, Eceiza A, Gabilondo N . J. Appl. Polym. Sci., 2017,134(20):44793.
[102]
Edhirej A, Sapuan S M, Jawaid M, Zahari N I . Starch-Stärke, 2017,69(1):1500366.
[103]
Sankri A, Arhaliass A, Dez I, Gaumont A C, Grohens Y, Lourdin D, Pillin I, Rolland-Sabaté A, Leroy E . Carbohydr.Polym, 2010,82(2):256.
[104]
Jiménez A, Fabra M J, Talens P, Chiralt A . Food Bioprocess Technol., 2012,5(6):2058.
[105]
Pang M M, Pun M Y, Ishak Z A M . J. Appl. Polym. Sci., 2013,129(6):3656.
[106]
Fechner P M, Wartewig S, Kiesow A, Heilmann A, Kleinebudde P, Neubert R H H . Starch-Stärke, 2005,57(12):605.
[107]
Liu W W, Xue J, Cheng B J, Zhu S W, Ma Q, Ma H . Int J. Agric. Biol. Eng., 2016,9(5):184.
[108]
Deng J, Li K, Harkin-Jones E, Price M, Karnachi N, Kelly A, Vera-Sorroche J, Coates P, Brown E, Fei M . Appl. Energy, 2014,113(6):1775.
[109]
Zepon K M, Vieira L F, Soldi V, Salmoria G V, Kanis L A . Polym. Test., 2013,32(6):1123.
[110]
Soares F C, Yamashita F, Müller C M O, Pires A T N . Polym. Test., 2014,33(33):34.
[111]
Fitch-Vargas P R, Aguilar-Palazuelos E, Zazueta-Morales J J, Vega-García M O, Valdez-Morales J E, Martínez-Bustos F, Jacobo-Valenzuela N . J. Food Sci., 2016,81(9):E2224.
[112]
González-Seligra P, Guz L, Yepes O O, Goyanes S, Famá L . LWT Food Sci. Technol., 2017,84:520.
[1] Ruyue Cao, Jingjing Xiao, Yixuan Wang, Xiangyu Li, Anchao Feng, Liqun Zang. Cascade RAFT Polymerization of Hetero Diels-Alder Cycloaddition Reaction [J]. Progress in Chemistry, 2023, 35(5): 721-734.
[2] Xuexian Wu, Yan Zhang, Chunyi Ye, Zhibin Zhang, Jingli Luo, Xianzhu Fu. Surface Pretreatment of Polymer Electroless Plating for Electronic Applications [J]. Progress in Chemistry, 2023, 35(2): 233-246.
[3] Shiying Yang, Qianfeng Li, Sui Wu, Weiyin Zhang. Mechanisms and Applications of Zero-Valent Aluminum Modified by Iron-Based Materials [J]. Progress in Chemistry, 2022, 34(9): 2081-2093.
[4] Xuanshu Zhong, Zongjian Liu, Xue Geng, Lin Ye, Zengguo Feng, Jianing Xi. Regulating Cell Adhesion by Material Surface Properties [J]. Progress in Chemistry, 2022, 34(5): 1153-1165.
[5] Xiaolian Niu, Kejun Liu, Ziming Liao, Huilun Xu, Weiyi Chen, Di Huang. Electrospinning Nanofibers Based on Bone Tissue Engineering [J]. Progress in Chemistry, 2022, 34(2): 342-355.
[6] Wen Zhou, Xin Zhang, Hongpeng Ma, Jie Xu, Bin Guo, Panxin Li. Chemical and Physical Mechanism and Method of Preparation of Thermoplastic Starch [J]. Progress in Chemistry, 2021, 33(11): 1972-1982.
[7] Shiying Yang, Junqin Liu, Qianfeng Li, Yang Li. Modification Mechanism of Zero-Valent Aluminum by Mechanical Ball Milling [J]. Progress in Chemistry, 2021, 33(10): 1741-1755.
[8] Miao Qin, Mengjie Xu, Di Huang, Yan Wei, Yanfeng Meng, Weiyi Chen. Iron Oxide Nanoparticles in the Application of Magnetic Resonance Imaging [J]. Progress in Chemistry, 2020, 32(9): 1264-1273.
[9] Hao Sun, Chengwei Song, Yuepeng Pang, Shiyou Zheng. Functional Design of Separator for Li-S Batteries [J]. Progress in Chemistry, 2020, 32(9): 1402-1411.
[10] Ruixuan Qin, Guocheng Deng, Nanfeng Zheng. Assembling Effects of Surface Ligands on Metal Nanomaterials [J]. Progress in Chemistry, 2020, 32(8): 1140-1157.
[11] Zhiyuan Lu, Yanni Liu, Shijun Liao. Enhancing the Stability of Lithium-Rich Manganese-Based Layered Cathode Materials for Li-Ion Batteries Application [J]. Progress in Chemistry, 2020, 32(10): 1504-1514.
[12] Huiya Wang, Limin Zhao, Fang Zhang, Dannong He. High-Performance Lithium-Ion Secondary Battery Membranes [J]. Progress in Chemistry, 2019, 31(9): 1251-1262.
[13] Dongdong Zha, Wen Zhou, Peng Yin, Bin Guo, Bengang Li, Yanan Huang. Ways and Mechanism of Improving the Mechanical Properties of Thermoplastic Starch [J]. Progress in Chemistry, 2019, 31(7): 1044-1055.
[14] Zhaoxiang Wang, Jun Ma, Yurui Gao, Shuai Liu, Xin Feng, Liquan Chen. Stabilizing Structure and Performances of Lithium Rich Layer-Structured Oxide Cathode Materials [J]. Progress in Chemistry, 2019, 31(11): 1591-1614.
[15] Ping Liu, Jing Wang, Hongye Hao, Yunfan Xue, Junjie Huang, Jian Ji. Photochemical Surface Modification of Biomedical Materials [J]. Progress in Chemistry, 2019, 31(10): 1425-1439.