中文
Announcement
More
Progress in Chemistry 2018, Vol. 30 Issue (12): 1844-1851 DOI: 10.7536/PC180308 Previous Articles   Next Articles

• Review •

Solid-State Nuclear Magnetic Resonance Techniques for Polymer Quantitative Investigation

Jie Shu1*, Jiali Gu1, Huipeng Zhao2   

  1. 1. Analysis and Testing Center, Soochow University, Suzhou 215123, China;
    2. Research Center for Analysis and Measurement, Donghua University, Shanghai 201620, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No. 21673148, 21303111).
PDF ( 542 ) Cited
Export

EndNote

Ris

BibTeX

Polymers have been widely used nowadays owing to their versatile properties, which firmly relate to their molecular physical and chemical structures. Therefore, the quantitative and quasi-quantitative characterization of polymer chemical and physical structures is essential in developing novel polymer materials. Among various characterization methods, solid-state nuclear magnetic resonance (SSNMR) plays an essential role in quantitative investigation, which is capable of providing quantitative information on chemical structure of polymers, phase composition of multi-phase systems as well as component content of block copolymers or polymer blends. However, traditional SSNMR quantitative method consumes very long experimental time for most of the systems. Cross polarization (CP) method, as a widely-used SSNMR technique, is capable of providing a spectrum within much shorter time. However, CP is mostly not quantitative. Therefore, several quantitative CP methods were proposed in past years, which are both quantitative and time-saving. In this article, we present an overview of the SSNMR quantitative methods, including the traditional techniques and the newly proposed CP methods in past twelve years. Basic principle and properties of each method are elucidated. In addition, several application examples are introduced which is aimed to assist the researchers in their works of polymer quantitative study.
Contents
1 Introduction
2 SSNMR quantitative techniques and the applications for polymer study
2.1 Direct polarization techniques (DP and DD)
2.2 Cross polarization technique (CP)
2.3 Quantitative CP methods
3 Conclusion

CLC Number: 

[1] Peng M, Chen Q. Chem. Phys. Lett., 2008, 456:189.
[2] Zhang L, Gellerstedt G. Magn. Reson. Chem., 2007, 45:37.
[3] Peng M, Liu W, Yang G, Chen Q, Luo S F, Zhao G, Yu L. Polym. Degrad. STab., 2008, 93:476.
[4] Mcneill C R, Watts B, Thomsen L, Belcher W J, Greenham N C, Dastoor P C. Nano lett., 2006, 6:1202.
[5] Lehnert R J, Hendra P J, Everall N. Polym. Communi., 1995, 36:2473.
[6] Gombás Á, Szabó-Révész P, Kata M, Regdon Jr. G,Erõs I. J. Therm. Anal. Calorim., 2002, 68:503.
[7] Lehnert R J, Hendra P J, Everall N, Clayden N J. Polymer, 1997, 38:1521.
[8] Guttman C M, Flynn K M, Wallace W E, Kearsley A J. Macromolecules, 2009, 42:1695.
[9] Hansen M R, Graf R, Spiess H W. Chem. Rev., 2016, 116:1272.
[10] Shu J, Dudenko D, Esmaeili M, Park J H, Puniredd S R, Chang J Y, Wreiby D W, Pisula W, Hansen M R. J. Am. Chem. Soc., 2013, 153:11075.
[11] Yuan Y, Shu J, Kolman K, Kiersnowski, Bubeck C, Zhang J M, Hansen M R. Macromolecules, 2016, 49:9493.
[12] Zhang T, Yuan Y, Cui X, Yin H, Gu J, Huang H, Shu J. J. Polym. Sci. Part B:Polym. Phys., 2018, 56:751.
[13] Yang L Y, Wei D X, Xu M, Yao Y F, Chen Q. Angew. Chem. Int. Ed. Engl., 2014, 126:3705
[14] Dudenko D, Kiersnowski A, Shu J, Pisula W, Sebastiani D, Spiess H, W, Hansen M R. Angew. Chem. Int. Ed. Engl., 2012, 51:11068.
[15] Princi E, Vicini S, Proietti N, Capitani D. Eur. Polym. J., 2005, 41:1196.
[16] Young S K, Jarrett W L, Mauritz K A. Polymer, 2002, 43:2311.
[17] Pallister P J, Barry S T. J. Chem. Phys., 2017, 146:052812.
[18] Hartmann S, Hahn E. Phys. Rev., 1962, 128:2042.
[19] Kolodziejski W, Klinowski J. Chem. Rev., 2002, 102:613.
[20] Chen J, Shu J, Schobloch S, Kroeger A, Graf R, Muñoz-Espí R, Landfester K, Ziener U. Macromolecules, 2012, 45:5108.
[21] Zhang L L, Chen Q, Hansen E W. Macromol. Chem. Phys., 2005, 206:246.
[22] Zhang L, Liu Z, Chen Q, Hansen E W. Macromolecules, 2007, 40:5411.
[23] Hou G J, Deng F, Ding S W, Fu R Q, Yang J, Ye C H. Chem. Phys. Lett., 2006, 421:356.
[24] Hou G J, Deng F, Ye C H, Ding S W. J. Chem. Phys., 2006, 124:234512.
[25] Oas T G, Griffin R G, Levitt M H. J. Chem. Phys.,1988, 692.
[26] Hou G J, Ding S W, Zhang L M, Deng F. J. Am. Chem. Soc., 2010, 132:5538.
[27] Shu J, Chen Q, Zhang S M. Chem. Phys. Lett., 2008, 462:125.
[28] Zhang S M, Xu P, SØrensen O W, Ernst R R. Concepts Magn. Reson., 1994, 6:275.
[29] Shu W F, Zhang S M. Chem. Phys. Lett., 2011, 511:424.
[30] Zhao H P, Chen Q, Zhang S M. Microporous Mesoporous Mater., 2012, 155:240.
[31] Zhao H P, Shu J, Chen Q, Zhang S M. Solid State Nucl. Magn. Reson., 2012, 43/44:56.
[32] (a)顾佳丽(Gu J L), 张田田(Zhang T T), 赵辉鹏(Zhao H P), 舒婕(Shu J), 李晓虹(Li X H). 高等学校化学学报(Chem. J. Chinese U.), 2018, 3:463.; (b)Gu J, Zhang T, Li X, Shu J. Polymer Testing, 2018, 71:192.
[33] Shu J, Li P, Chen Q, Zhang S. Macromolecules, 2010, 43:8993.
[34] Zhang S M, Wu X L, Zhang H P, Wu X W. Chem. Phys. Lett., 1990, 165:465.
[35] 舒婕(Shu J). 华东师范大学博士论文(Doctoral Dissertation of East China Normal University), 2009.
[36] Raya J, Perrone B, Hirschinger J. J. Magn. Reson., 2013, 227:93.
[37] Raya J, Hirschinger J. J. Magn. Reson., 2017, 281:253.
[38] Johnson R L, Schmidt-Rohr K. J. Magn. Reson., 2014, 239:44.
[39] Liu H W, Zhou X Y, Chen Q, Zhang S M. Chem. Phys. Lett., 2017, 679:233.
[40] Bernardinelli O D, Lima M A, Rezendel C A, Polikarpov I, deAzevedo E R. Biotchnol Biofuels, 2015, 8:110.
[1] Wanping Zhang, Ningning Liu, Qianjie Zhang, Wen Jiang, Zixin Wang, Dongmei Zhang. Stimuli-Responsive Polymer Microneedle System for Transdermal Drug Delivery [J]. Progress in Chemistry, 2023, 35(5): 735-756.
[2] Ruyue Cao, Jingjing Xiao, Yixuan Wang, Xiangyu Li, Anchao Feng, Liqun Zang. Cascade RAFT Polymerization of Hetero Diels-Alder Cycloaddition Reaction [J]. Progress in Chemistry, 2023, 35(5): 721-734.
[3] Dong Baokun, Zhang Ting, He Fan. Research Progress and Application of Flexible Thermoelectric Materials [J]. Progress in Chemistry, 2023, 35(3): 433-444.
[4] Liu Jun, Ye Daiyong. Research Progress of Antiviral Coatings [J]. Progress in Chemistry, 2023, 35(3): 496-508.
[5] Xuexian Wu, Yan Zhang, Chunyi Ye, Zhibin Zhang, Jingli Luo, Xianzhu Fu. Surface Pretreatment of Polymer Electroless Plating for Electronic Applications [J]. Progress in Chemistry, 2023, 35(2): 233-246.
[6] Qitong Wang, Jiale Ding, Danying Zhao, Yunhe Zhang, Zhenhua Jiang. Dielectric Polymer Materials for Energy Storage Film Capacitors [J]. Progress in Chemistry, 2023, 35(1): 168-176.
[7] Shuai Huang, Yu Tao, Yinliang Huang. Photodeformable Composite Materials Based on Liquid Crystalline Polymers [J]. Progress in Chemistry, 2022, 34(9): 2012-2023.
[8] Lijun Bao, Junwu Wei, Yangyang Qian, Yujia Wang, Wenjie Song, Yunmei Bi. Synthesis, Properties and Applications of Enzyme-Responsive Linear-Dendritic Block Copolymers [J]. Progress in Chemistry, 2022, 34(8): 1723-1733.
[9] Zheng Chen, Zhenhua Jiang. Discussion on Some Chemical Problems of Polymer Condensed Statein Solvent-Free Polymer Production Technology [J]. Progress in Chemistry, 2022, 34(7): 1576-1589.
[10] Hang Yin, Zhi Li, Xiaofeng Guo, Anchao Feng, Liqun Zhang, San Hoa Thang. Selection Principle of RAFT Chain Transfer Agents and Universal RAFT Chain Transfer Agents [J]. Progress in Chemistry, 2022, 34(6): 1298-1307.
[11] Fengjing Jiang, Hanchen Song. Graphite-based Composite Bipolar Plates for Flow Batteries [J]. Progress in Chemistry, 2022, 34(6): 1290-1297.
[12] Tianyu Zhou, Yanbo Wang, Yilin Zhao, Hongji Li, Chunbo Liu, Guangbo Che. The Application of Aqueous Recognition Molecularly Imprinted Polymers in Sample Pretreatment [J]. Progress in Chemistry, 2022, 34(5): 1124-1135.
[13] Zhenxing Li, Zhiwang Luo, Ping Wang, Zhenqiang Yu, Erqiang Chen, Helou Xie. Luminescent Liquid Crystalline Polymers: Molecular Fabrication, Structure-Properties and Their Applications [J]. Progress in Chemistry, 2022, 34(4): 787-800.
[14] Chenghao Li, Yamin Liu, Bin Lu, Ulla Sana, Xianyan Ren, Yaping Sun. Toward High-Performance and Functionalized Carbon Dots: Strategies, Features, and Prospects [J]. Progress in Chemistry, 2022, 34(3): 499-518.
[15] Yuling Liu, Tengda Hu, Yilian Li, Yang Lin, Borsali Redouane, Yingjie Liao. Fast Self-Assembly Methods of Block Copolymer Thin Films [J]. Progress in Chemistry, 2022, 34(3): 609-615.