中文
Announcement
More
Progress in Chemistry 2018, Vol. 30 Issue (12): 1803-1818 DOI: 10.7536/PC180303 Previous Articles   Next Articles

• Review •

Crystal Structure and Electronic Structure of Uranium Nitrides

Xiaofang Wang1*, Yin Hu1, Qifa Pan1, Ruilong Yang1, Zhong Long2, Kezhao Liu2*   

  1. 1. Science and Technology on Surface Physics and Chemistry Laboratory, Mianyang 621908, China;
    2. Institute of Materials, China Academy of Engineering Physics, Mianyang 621907, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by NSAF(No. U1630250), the National Natural Science Foundation of China(No. 21401174), the CAEP Foundation(No. TCSQ2016216, YZJJLX2016006, TP201402-3), and the CXTQ Foundation(No. CXTQ20171631302).
PDF ( 680 ) Cited
Export

EndNote

Ris

BibTeX

Uranium nitrides have aroused more and more attention due to their unique physical and chemical properties and their excellent performance in applications such as nuclear fuel and anti-corrosion coating for uranium metal. In U-N system, five structures of uranium nitrides, including NaCl-type UN, HgIn-type UN, Mn2O3-type α-U2N3, La2O3-type β-U2N3 and CaF2-type UN2, have been identified and studied extensively. Up to now, because of the complex nonstoichiometric problems of uranium nitrides, the understanding of the transformation relationship between these phases is still ambiguous. In addition, the basic physical properties of uranium nitrides have been fundamentally changed due to the difference in electronic structures of uranium nitrides with different nitrogen content. The studies of the crystal structure and electronic structure of uranium nitrides are the first step in exploring the causes of their excellent performances, and have attracted much attention in recent years. Based on the analysis and summary of the literatures, as well as the research results of our group, this paper reviews the main progress in the study of the crystal structure and electronic structure of uranium nitrides. The phase transformation and electronic structure evolutions of uranium nitrides are summarized, which is expected to provide reference for the experimental studies and functional applications of uranium nitrides.
Contents
1 Introduction
2 Composition and crystal structure of uranium nitrides
2.1 Crystal structure of UN
2.2 Crystal structure of U2N3
2.3 Crystal structure of UN2
3 Phase relation of uranium nitrides
3.1 Phase relation between NaCl type UN and R3m type UN
3.2 Phase relation between NaCl type UN and U2N3
3.3 Phase relation between α-U2N3 and β-U2N3
3.4 Phase relation between UN2 and α-U2N3
3.5 Phase transition mechanism of uranium nitrides
4 Electronic structures of uranium nitrides
4.1 Electronic structure of UN
4.2 Electronic structure of nitrogen-rich nitrides
5 Conclusion and outlook

CLC Number: 

[1] Matzke H. Science of Advanced LMFBR Fuels. North-Holland, Amsterdam, 1986.
[2] 张玉娟(Zhang Y J), 周张健(Zhou Z J), 蓝建慧(Lan J H), 柴之芳(Chai Z F), 石伟群(Shi W Q). 中国科学:化学(Scientia Sinica Chimica), 2017, 47:92.
[3] Long Z, Liu K Z, Bai B, Yan D X. J. Alloys Compd., 2010, 491:252.
[4] Arkush R, Mintz M H, Shamir N. J. Nucl. Mater., 2000, 281:182.
[5] 罗丽珠(Luo L Z), 赖新春(Lai X C), 汪小琳(Wang X L). 化学进展(Progress in Chemistry), 2011, 23:1322.
[6] Long Z, Zeng R, Hu Y, Jing L, Wang W, Zhao Y, Luo Z, Bai B, Wang X, Liu K. Appl. Surf. Sci., 2018, 43:407.
[7] Jiang A, Zhao Y, Long Z, Hu Y, Wang X, Yang R, Zeng R, Liu K. J. Nucl. Mater., 2018, 504:215.
[8] Shareef M F, Bhardwaj P, Singh S. J. Mol. Struct., 2014, 1068:20.
[9] Modak P, Verma A K. Phys. Rev. B, 2011, 84:024108.
[10] Rundle R E, Baenziger N C, Wilson A S, McDonald R A. J. Am. Chem. Soc., 1948, 70:99.
[11] Olsen J S, Gerward L, Benedict U. J. Appl. Crystallogr., 1985, 18:37.
[12] Stöcker H J, Naoumidis A. Ber. Deut. Keram. Ges., 1966, 43:724.
[13] Silva G W C, Yeamans C B, Sattelberger A P, Hartmann T, Cerefice G S, Czerwinski K R. Inorg. Chem., 2009, 48:10635.
[14] Wang X, Qiu R Z, Wang Q, Luo L Z, Hu Y, Liu K Z, Zhang P C. Inorg. Chem., 2017, 56:3550.
[15] Masaki N, Tagawa H. J. Nucl. Mater., 1975, 57:187.
[16] Mueller M H, Knott H W. Acta Crystallogr., 1958, 11:751.
[17] Chiotti P. J. Am. Ceram. Soc., 1952, 35:123.
[18] Williams J, Sambell R A J. Journal of the Less Common Metals, 1959, 1:217.
[19] Kempter C P, McGuire J C, Nadler M R. Anal. Chem., 1959, 31:156.
[20] Kempter C P, Elliott R O. J. Chem. Phys., 1959, 30:1524.
[21] Evans P E, Davies T J. J. Nucl. Mater., 1963, 10:43.
[22] Anselin F. J. Nucl. Mater., 1963, 10:301.
[23] Didchenko R, Gortsema F P. Inorg. Chem., 1963, 2:1079.
[24] Olson W M, Mulford R N R. J. Phys. Chem., 1963, 67:952.
[25] Bugl J, Bauer A A. J. Am. Ceram. Soc., 1964, 47:425.
[26] Price C E, Warren I H. Inorg. Chem., 1965, 4:115.
[27] Berthold H J, Delliehausen C. Angew. Chem. Int. Edit., 1966, 5:726.
[28] Benz R, Bowman M G. J. Am. Chem. Soc., 1966, 88:264.
[29] Counsell J F, Dell R M, Martin J F. Transactions of the Faraday Society, 1966, 62:1736.
[30] Sole M J, Van Der Walt C M. Acta Metallurgica, 1968, 16:501.
[31] Mitamura T, Kanno M, Mukaibo T. J. Ncl. Sci. Techno., 1968, 5:60.
[32] Shunk F A. Constitution of Binary Alloys. McGraw-Hill, New York, 1969.
[33] Benz R, Hutchinson W B. J. Nucl. Mater., 1970, 36:135.
[34] Sasa Y, Atoda T. J. Am. Ceram. Soc., 1970, 53:102.
[35] Tennery V J, Bomar E S. J. Am. Ceram. Soc., 1971, 54:247.
[36] Cordfunke E H P. J. Nucl. Mater., 1975, 56:319.
[37] Muromura T, Tagawa H. J. Nucl. Mater., 1979, 79:264.
[38] Johnson G K, Cordfunke E H P. J. Chem. Thermodyn., 1981, 13:273.
[39] Hayes S L, Thomas J K, Peddicord K L. J. Nucl. Mater., 1990, 171:262.
[40] Black L, Miserque F, Gouder T, Havela L, Rebizant J, Wastin F. J. Alloys Compd., 2001, 315:36.
[41] Le Bihan T, Idiri M, Heathman S. J. Alloys Compd., 2003, 358:120.
[42] Silva G W C, Yeamans C B, Ma L, Cerefice G S, Czerwinski K R, Sattelberger A P. Chem. Mater., 2008, 20:3076.
[43] Adachi J, Kurosaki K, Uno M, Yamanaka S, Takano M, Akabori M, Minato K. J. Nucl. Mater., 2009, 384:6.
[44] Muta H, Kurosaki K, Uno M, Yamanaka S. J. Nucl. Mater., 2009, 389:186.
[45] Le T N, Lorenzelli N, Zuppiroli L, Allain Y, Andre G. J. Nucl. Mater., 1991, 184:230.
[46] Poineau F, Yeamans C, Silva G W C, Cerefice G, Sattelberger A, Czerwinski K. J. Radioanal. Nucl. Chem., 2012, 292:989.
[47] Hoenig C L. J. Am. Ceram. Soc., 1971, 54:391.
[48] Benz R, Balog G, Baca B H. High Temp. Sci., 1970, 2:221.
[49] Blum P L, Laugier J, Martin J M. Comptes Rendus Hebdomadaires Des Seances De L Academie Des Sciences Serie C, 1969, 268:148.
[50] Hayes S L, Thomas J K, Peddicord K L. J. Nucl. Mater., 1990, 171:300.
[51] Uno M, Nishi T, Takano M. Thermodynamic and Thermophysical Properties of the Actinide Nitrides A2-Konings, Rudy J M. Oxford:Elsevier, 2012.61.
[52] Tagawa H. J. Nucl. Mater., 1974, 51:78.
[53] Tobisch J, Hase W. Physica Status Solidi, 1967, 21:K11.
[54] Masaki N, Tagawa H, Tsuji T. J. Nucl. Mater., 1972, 45:230.
[55] Serizawa H, Fukuda K, Ishii Y, Morii Y. J. Nucl. Mater., 1994, 208:128.
[56] Chevalier P Y, Fischer E, Cheynet B. J. Nucl. Mater., 2000, 280:136.
[57] Trzebiatowski W, Troc R. Bull. Acad. Polon. Sci. Ser. Sci. Chem., 1964, 12:681.
[58] Trzebiatowski W, Troc R, Leciejewicz J. Bull. Acad. Polon. Sci. Ser. Sci. Chim., 1962, 10:395.
[59] Evans P E. J. Am. Ceram. Soc., 1962, 45:305.
[60] Tagawa H, Masaki N. J. Inorg. Nucl. Chem., 1974, 36:1099.
[61] Vaughan D A. J. Metals, 1956, 8:78.
[62] Atoda T, Kobayashi M, Sasa Y, Takahashi Y, Hiashi I. in Carbides in Nuclear Energy. London:Macmillan & Co., Ltd., 1964. 11.
[63] Allbutt M, Dell R M. J. Nucl. Mater., 1967, 24:1.
[64] Masaki N, Tagawa H. J. Nucl. Mater., 1975, 58:241.
[65] Katsura M, Serizawa H. J. Alloys Compd., 1992, 187:389.
[66] Serizawa H, Fukuda K, Katsura M. J. Alloys Compd., 1995, 223:39.
[67] Serizawa H, Fukuda K, Katsura M. J. Alloys Compd., 1996, 232:274.
[68] Yeamans C B, Silva G W C, Cerefice G S, Czerwinski K R, Hartmann T, Burrell A K, Sattelberger A P. J. Nucl. Mater., 2008, 374:75.
[69] Scott B L, Joyce J J, Durakiewicz T D, Martin R L, McCleskey T M, Bauer E, Luo H, Jia Q. Coord. Chem. Rev., 2014, 266/267:137.
[70] Katsura M, Miyake M, Serizawa H. J. Alloys Compd., 1993, 193:101.
[71] Berthold H J, Hein H G. Angewandte Chemie, 1969, 81:910.
[72] Long Z, Luo L, Lu Y, Hu Y, Liu K, Lai X. J. Alloys Compd., 2016, 664:745.
[73] Lu Y, Wang B, Li R, Shi H, Zhang P. J. Nucl. Mater., 2011, 410:46.
[74] Obodo K O, Chetty N. J. Nucl. Mater., 2013, 442:235.
[75] Tagawa H. J. Nucl. Mater., 1971, 41:313.
[76] Mei Z G, Stan M. J. Alloys Compd., 2014, 588:648.
[77] Tseplyaev V I, Starikov S V. J. Nucl. Mater., 2016, 480:7.
[78] Fujino T, Tagawa H. J. Phys. Chem. Solids, 1973, 34:1611.
[79] Wang X, Long Z, Bin R, Yang R, Pan Q, Li F, Luo L, Hu Y, Liu K. Inorg. Chem., 2016, 55:10835.
[80] Norton P R, Tapping R L, Creber D K, Buyers W J L. Phys. Rev. B, 1980, 21:2572.
[81] Samsel-Czekala M, Talik E, Du Plessis P de V, Troc R, Misiorek H, Sulkowski C. Phys. Rev. B, 2007, 76:144426.
[82] Zhang Y B, Meng D Q, Xu Q Y, Zhang Y S. J. Nucl. Mater., 2010, 397:31.
[83] Fujimori S I, Ohkochi T, Okane T, Saitoh Y, Fujimori A, Yamagami H, Haga Y, Yamamoto E, ōnuki Y. Phys. Rev. B, 2012, 86:235108.
[84] Liu K Z, Luo L Z, Luo L L, Long Z, Hong Z L, Yang H, Wu S. Appl. Surf. Sci., 2013, 280:268.
[85] Troc R. J. Solid State Chem., 1975, 13:14.
[86] Reihl B, Hollinger G, Himpsel F J. Phys. Rev. B, 1983, 28:1490.
[87] Ito T, Kumigashira H, Souma S, Takahashi T, Suzuki T. J. Magn. Magn. Mater., 2001, 226/230:68.
[88] Long Z, Hu Y, Chen L, Luo L Z, Liu K Z, Lai X C. J. Alloys Compd., 2015, 620:289.
[89] Liu K Z, Bin R, Xiao H, Long Z, Hong Z L, Yang H, Wu S. Appl. Surf. Sci., 2013, 265:389.
[90] Lu L, Li F F, Hu Y, Xiao H, Bai B, Zhang Y Z, Luo L Z, Liu J, Liu K Z. J. Nucl. Mater., 2016, 480:189.
[91] Evarestov R A, Panin A I, Bandura A V, Losev M V. Journal of Physics:Conference Series, 2008, 117:12015.
[92] Lu Y, Wang B, Li R, Shi H, Zhang P. J. Nucl. Mater., 2010, 406:218.
[93] Weck P F, Kim E, Balakrishnan N, Poineau F, Yeamans C B, Czerwinski K R. Chem. Phys. Lett., 2007, 443:82.
[94] 罗立力(Luo L L), 刘柯钊(Liu K Z), 罗丽珠(Luo L Z), 钟永强(Zhong Y Q), 李芳芳(Li F F), 肖红(Xiao H).原子能科学技术(Atomic Energy Sci. Technol.), 2013, 47:1074.
[95] 陆雷(Lu L), 肖红(Xiao H), 李芳芳(Li F F), 钟永强(Zhong Y Q), 白彬(Bai B), 刘柯钊(Liu K Z). 稀有金属材料与工程(Rare Metal Mater. Eng.), 2015, 4:1975.
[96] Hu Y, Long Z, Liu K Z, Liu J. Mater. Lett., 2016, 178:124.
[97] Wang X, Long Z, Huang H, Bin R, Hu Y, Luo L, Liu K, Zhang P. Comp. Mater. Sci., 2016, 123:224.
[98] Luo L, Lu L, Zhao D, Zhang H, Jing T, Liu K. J. Electron. Spectrosc. Relat. Phenom., 2017, 217:6.
[99] 易伟(Yi W), 代胜平(Dai S P), 沈保罗(Shen B L), 左国平(Zuo G P), 谈先球(Tan X Q), 彭倩(Peng Q), 王莹(Wang Y). 核动力工程(Nuclear Power Engineering), 2007, 28:46.
[1] Yixue Xu, Shishi Li, Xiaoshuang Ma, Xiaojin Liu, Jianjun Ding, Yuqiao Wang. Surface/Interface Modulation Enhanced Photogenerated Carrier Separation and Transfer of Bismuth-Based Catalysts [J]. Progress in Chemistry, 2023, 35(4): 509-518.
[2] Yue Yang, Ke Xu, Xuelu Ma. Catalytic Mechanism of Oxygen Vacancy Defects in Metal Oxides [J]. Progress in Chemistry, 2023, 35(4): 543-559.
[3] Meng Wang, He Song, Yewen Li. Three Dimensional Self-Assembled Blue Phase Liquid Crystalline Photonic Crystal [J]. Progress in Chemistry, 2022, 34(8): 1734-1747.
[4] Yang Chen, Xiaoli Cui. Titanium Dioxide Anode Materials for Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(8): 1249-1269.
[5] Jiasheng Lu, Jiamiao Chen, Tianxian He, Jingwei Zhao, Jun Liu, Yanping Huo. Inorganic Solid Electrolytes for the Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(8): 1344-1361.
[6] Xiaoyang Liu. Condensed Matter Chemistry under High Pressure [J]. Progress in Chemistry, 2020, 32(8): 1184-1202.
[7] Ze Feng, Dan Sun, Yougen Tang, Haiyan Wang. Rich-Nickel Ternary Layered Oxide LiNi0.8Co0.1Mn0.1O2 Cathode Material [J]. Progress in Chemistry, 2019, 31(2/3): 442-454.
[8] Zhao Xiang, Zhao Zongyan. Quaternary Compound Semiconductor Cu2 ZnSnS4: Structure, Preparation, Applications, and Perspective [J]. Progress in Chemistry, 2015, 27(7): 913-934.
[9] Lu Wensheng, Wang Haifei, Zhang Jianping, Jiang Long. Gold Nanorods: Synthesis, Growth Mechanism and Purification [J]. Progress in Chemistry, 2015, 27(7): 785-793.
[10] Tian Zhimei, Liu Wangdan, Cheng Longjiu. Progress of the Experimental and Theoretical Studies on Aum(SR)n Clusters [J]. Progress in Chemistry, 2015, 27(12): 1743-1753.
[11] Yang Feng, Liang Hong*. Structural Basis of Human Serum Albumin and Its Complexes [J]. Progress in Chemistry, 2013, 25(04): 530-538.
[12] Shen Juan, Jin Bo, Jiang Qiying, Zhong Guoqing, Huo Jichuan. Computer Simulation Studies on Apatite Crystal and Its Interaction with Biologic Molecules [J]. Progress in Chemistry, 2012, 24(05): 737-746.
[13] Ren Hong, Zhang Ping, Wu Ping, Lu Fei. Coordination Polymers Constructed from Triazole and Carboxylate Mixed Ligands [J]. Progress in Chemistry, 2012, 24(05): 769-775.
[14] Chen Piheng, Lai Xinchun, Wang Xiaolin. Progress in Theoretical Research of Metallic Plutonium and its Compounds [J]. Progress in Chemistry, 2011, 23(7): 1316-1321.
[15] Su Jing, Li Jun. Theoretical Studies on Fluorescence Spectra of Actinide Complexes [J]. Progress in Chemistry, 2011, 23(7): 1329-1337.