中文
Announcement
More
Progress in Chemistry 2018, Vol. 30 Issue (12): 1819-1826 DOI: 10.7536/PC180225 Previous Articles   Next Articles

• Review •

Organic Radical Reactions in Water Medium

Yiling Huang, Wenting Wei*   

  1. School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the Natural Science Foundation of Zhejiang Province(No. LQ18B020002) and the K. C. Wong Magna Fund in Ningbo University.
PDF ( 962 ) Cited
Export

EndNote

Ris

BibTeX

The greenization of chemical reaction solvent is an inevitable trend of green chemistry in the future. And it is the goal of chemists to replace the traditional organic solvents with water which is abundant, cheap, non-toxic and pollution-free. Radical reaction has gradually become an important strategy for organic synthesis due to its high activity and mild reaction conditions. This review summarizes the advancements of organic radical reaction in water medium in recent five years on the basis of different chemical bonds.
Contents
1 Introduction
2 The construction of C-C bonds
3 The construction of C-N bonds
4 The construction of C-O bonds
5 The construction of C-S bonds
6 Conclusion

CLC Number: 

[1] Andrade C K Z, Alves L M. Curr. Org. Chem., 2005, 9:195.
[2] Simon M O, Li C J. Chem. Soc. Rev., 2012, 41:1415.
[3] Sheldon R A. Green Chem., 2005, 7:267.
[4] 李正凯(Li Z K), 吴之清(Wu Z Q), 邓杭(Deng H), 周向葛(Zhou X G). 有机化学(Chinese Journal of Organic Chemistry), 2013, 33:760.
[5] Lipshutz B H, Gallou F, Handa S. ACS Sustain. Chem. Eng., 2016, 4:5838.
[6] Li Z, Ke F, Deng H, Xu H, Xiang H, Zhou X. Org. Biomol. Chem., 2013, 11:2943.
[7] 宋河远(Song H Y), 康美荣(Kang M R), 靳荣华(Jin R H), 金福祥(Jin F X), 陈静(Chen J). 化学进展(Progress in Chemistry), 2016, 28(9):1313.
[8] Wang X S, Sheng J, Lu L, Yang K, Li Y L. ACS Comb. Sci., 2011, 13:196.
[9] Leitner W. Acc. Chem. Res., 2002, 35:746.
[10] Feng X J, Yan M, Zhang T, Liu Y, Bao M. Green Chem., 2010, 12:1758.
[11] Du Z, Zhou W, Bai L, Wang F, Wang J X. Synlett, 2011, 369.
[12] Chen J, Spear S K, Huddleston J G. Green Chem., 2005, 7:64.
[13] Wang F, Chen C, Deng G, Xi C J. J. Org. Chem., 2012, 77:4148.
[14] Zard S Z. Chem. Soc. Rev., 2008, 37:1603.
[15] Staveness D, Bosque I, Stephenson C R J. Acc. Chem. Res., 2016, 49:2295.
[16] Deng G B, Zhang J L, Liu Y Y, Liu B, Yang X H, Li J H. Chem. Commun., 2015, 51:1886.
[17] Kilpatrick B, Heller M, Arns S. Chem. Commun., 2013, 49:514.
[18] Mao S, Gao Y R, Zhu X Q, Guo D D, Wang Y Q. Org. Lett., 2015, 17:1692.
[19] Zhao Y T, Huang B B, Yang C, Xia W J. Org. Lett., 2016, 18:3326.
[20] Postigo A. Curr. Org. Chem., 2009, 13:1683.
[21] Perchyonoka V T, Lykakisb I N. Curr. Org. Chem., 2009, 13:573.
[22] Wei W T, Zhu W M, Ying W W, Wang Y N, Bao W H, Gao L H, Luo Y J, Liang H Z. Adv. Synth. Catal., 2017, 359:3551.
[23] Ying W W, Zhu W M, Liang H Z, Wei W T. Synlett, 2018, 29:215.
[24] Zhu W M, Bao W H, Ying W W, Chen W T, Huang Y L, Ge G P, Chen G P, Wei W T. Asian J. Org. Chem., 2018, 7:337.
[25] Wei W T, Zhu W M, Liang W D, Wu Y, Huang H Y, Huang Y L, Luo J F, Liang H Z. Synlett, 2017, 28:2153.
[26] Wei W T, Ying W W, Zhu W M, Wu Y, Huang Y L, Cao Y Q, Wang Y N, Liang H Z. Synlett, 2017, 28:2307.
[27] Li D D, Li Z Y, Wang G W. J. Org. Chem., 2015, 80:190.
[28] Zhu C, Yang B, Bäckvall J E. J. Am. Chem. Soc., 2015, 137:11868.
[29] Augustine R L. Carbon-Carbon Bond Formation. Dekker:New York, 1979.
[30] Naresh G, Kant R, Narender T. Org. Lett., 2015, 17:3446.
[31] Wu C J, Zhong J J, Meng Q Y, Lei T, Gao X W, Tung C H, Wu L Z. Org. Lett., 2015, 17:884.
[32] Li H, Liu C J, Zhang Y H, Sun Y D, Wang B, Liu W B. Org. Lett., 2015, 17:932.
[33] Cui L, Chen H, Liu C, Li C Z. Org. Lett., 2016, 18:2188.
[34] Xu J, Qiao L, Shen J B, Chai K J, Shen C, Zhang P F. Org. Lett., 2017, 19:5661.
[35] Shen H G, Liu Z L, Zhang P, Tan X Q, Zhang Z Z, Li C Z. J. Am. Chem. Soc., 2017, 139:9843.
[36] Ruiz-Castillo P, Buchwald S L. Chem. Rev., 2016, 116:12564.
[37] Cho H S, Kim J Y, Kwak J, Chang S. Chem. Soc. Rev., 2011, 40:5068.
[38] Ramirez T A, Zhao B, Shi Y. Chem. Soc. Rev., 2012, 41:931.
[39] Huang H, Chen W H, Xu Y, Li J. Green Chem., 2015, 17:4715.
[40] Sharma A, Hartwig J F. Nature, 2015, 29:600.
[41] 窦言东(Dou Y D), 应莎莎(Ying S S), 张晨卿(Zhang C Q), 余黎阳(Yu L Y), 郑垦(Zheng K), 朱勍(Zhu Q). 化学进展(Progress in Chemistry), 2007, 29(02/3):293.
[42] Wang T, Yuan L, Zhao Z G, Shao A L, Gao M, Huang Y F, Xiong F, Zhang H L, Zhao J F. Green Chem., 2015, 17:2741.
[43] Liu C, Wang X Q, Li Z D, Cui L, Li C Z. J. Am. Chem. Soc., 2015, 137:9820.
[44] Natarajan P, Priya, Chuskit D. Green Chem., 2017, 19:5854.
[45] Deb M L, Pegu C D, Borpatra P J, Saikia P J, Baruah P K. Green Chem., 2017, 19:4036.
[46] Chylinska J B, Urbanski T, Mordarski M. J. Med. Chem., 1963, 6:484.
[47] Waisser K, Gregor K, Kubicova L, Klimesova V, Kunes J, Machacek M, Kaustova J. Eur.J. Med. Chem., 2000, 35:733.
[48] Petrlikova E, Waisser K, DiviSova H, Husakova P, Vrabcova P, Kunes J, Kolar K, Stolarikova J. Bioorg. Med. Chem., 2010, 18:8178.
[49] Wei W T, Zhu W M, Ying W W, Wu Y, Huang Y L, Liang H Z. Org. Biomol. Chem., 2017, 15:5254.
[50] Jiang Y Q, Li X F, Li X Y, Sun Y M, Zhao Y R, Jia S H, Guo N, Xu G Q, Zhang W W. Chin. J. Chem., 2017, 35:1239.
[51] Xu Z W, Yan P F, Jiang H, Liu K R, Zhang Z C. Chin. J. Chem., 2017, 35:581.
[52] Yu D G, Li B J, Shi Z J. Acc. Chem. Res., 2010, 43:1486.
[53] Hossain M M, Huang W K, Chen H J, Wang P H, Shyu S G. Green Chem., 2014, 16:3013.
[54] Ren L H, Wang L Y, Lv Y, Shang S S, Chen B, Gao S. Green Chem., 2015, 17:2369.
[55] Satheesh V, Sengoden M, Punniyamurthy T. J. Org. Chem., 2016, 81:9792.
[56] Dembitsky V M. Eur. J. Med. Chem. 2008, 43:223.
[57] Zmitek K, Zupan M, Iskra J. Org. Biomol. Chem., 2007, 5:3895.
[58] Kong D L, Cheng L, Yue T, Wu H R, Feng W C, Wang D, Liu L. J. Org. Chem., 2016, 81:5337.
[59] Xie H Y, Han L S, Huang S, Lei X T, Cheng Y, Zhao W F, Sun H B, Wen X A, Xu Q L. J. Org. Chem., 2017, 82:5236.
[60] Wu J L, Liu Y, Ma X W, Liu P, Gu C Z, Dai B. Chin. J. Chem., 2017, 35:1391.
[61] Wei W T, Zhu W M, Shao Q J, Bao W H, Chen W T, Chen G P, Luo J F, Liang H Z. ACS Sustainable Chem. Eng., 2018, 6:8029.
[62] Dondoni A. Angew. Chem. Int. Ed., 2010, 120:9133.
[63] Cole D C, Lennox W J, Lombardi S, Ellingboe J W, Bernotas R C, Tawa G J, Mazandarani H, Smith D L, Zhang G M, Coupet J, Schechter L E. J. Med. Chem., 2005, 48:353.
[64] Banerjee M, Poddar A, Mitra G, Surolia A, Owa T, Bhattacharyya B. J. Med. Chem., 2005, 48:547.
[65] 孙丰莉(Sun F L), 刘学民(Liu X M), 陈新志(Chen X Z), 钱超(Qiao C), 葛新(Ge X). 有机化学(Chinese Journal of Organic Chemistry), 2017, 37:2211.
[66] Zheng L, Zhou Z Z, He Y T, Li L H, Ma J W, Qiu Y F, Zhou P X, Liu X Y, Xu P F, Liang Y M. J. Org. Chem., 2016, 81:66.
[67] Yang Y, Bao Y J, Guan Q Q, Sun Q, Zha Z G, Wang Z Y. Green Chem., 2017, 19:112.
[68] Lai J Y, Yuan G Q. Tetrahedron Lett., 2017, 59:524.
[1] Zhixuan Wang, Shaokui Zheng. Selective Ionic Removal Strategy and Adsorbent Preparation [J]. Progress in Chemistry, 2023, 35(5): 780-793.
[2] Lan Mingyan, Zhang Xiuwu, Chu Hongyu, Wang Chongchen. MIL-101(Fe) and Its Composites for Catalytic Removal of Pollutants: Synthesis Strategies, Performances and Mechanisms [J]. Progress in Chemistry, 2023, 35(3): 458-474.
[3] Niu Wenhui, Zhang Da, Zhao Zhengang, Yang Bin, Liang Feng. Development of Na-Based Seawater Batteries: “Key Components and Challenges” [J]. Progress in Chemistry, 2023, 35(3): 407-420.
[4] Shiying Yang, Qianfeng Li, Sui Wu, Weiyin Zhang. Mechanisms and Applications of Zero-Valent Aluminum Modified by Iron-Based Materials [J]. Progress in Chemistry, 2022, 34(9): 2081-2093.
[5] Deshan Zhang, Chenho Tung, Lizhu Wu. Artificial Photosynthesis [J]. Progress in Chemistry, 2022, 34(7): 1590-1599.
[6] Lusha Gao, Jingwen Li, Hui Zong, Qianyu Liu, Fansheng Hu, Jiesheng Chen. Condensed Matter and Chemical Reactions in Hydrothermal Systems [J]. Progress in Chemistry, 2022, 34(7): 1492-1508.
[7] Shiyu Li, Yongguang Yin, Jianbo Shi, Guibin Jiang. Application of Covalent Organic Frameworks in Adsorptive Removal of Divalent Mercury from Water [J]. Progress in Chemistry, 2022, 34(5): 1017-1025.
[8] Tianyu Zhou, Yanbo Wang, Yilin Zhao, Hongji Li, Chunbo Liu, Guangbo Che. The Application of Aqueous Recognition Molecularly Imprinted Polymers in Sample Pretreatment [J]. Progress in Chemistry, 2022, 34(5): 1124-1135.
[9] Yan Xu, Chungang Yuan. Preparation, Stabilization and Applications of Nano-Zero-Valent Iron Composites in Water Treatment [J]. Progress in Chemistry, 2022, 34(3): 717-742.
[10] Xiaoqing Yin, Weihao Chen, Boyuan Deng, Jialu Zhang, Wanqi Liu, Kaiming Peng. The Application and Mechanism of Superwetting Membrane in Demulsification of Oil-in-Water Emulsions [J]. Progress in Chemistry, 2022, 34(3): 580-592.
[11] Xin Pang, Shixiang Xue, Tong Zhou, Hudie Yuan, Chong Liu, Wanying Lei. Advances in Two-Dimensional Black Phosphorus-Based Nanostructures for Photocatalytic Applications [J]. Progress in Chemistry, 2022, 34(3): 630-642.
[12] Shixiang Xue, Pan Wu, Liang Zhao, Yanli Nan, Wanying Lei. The Application of CoFe Layered Double Hydroxide-Based Materials in Oxygen Evolution Reaction [J]. Progress in Chemistry, 2022, 34(12): 2686-2699.
[13] Xing Zhan, Wei Xiong, Michael K.H Leung. From Wastewater to Energy Recovery: The Optimized Photocatalytic Fuel Cells for Applications [J]. Progress in Chemistry, 2022, 34(11): 2503-2516.
[14] Wu Mingming, Lin Kaige, Aydengul Muhyati, Chen Cheng. Research on the Construction and Application of Superwetting Materials with Photothermal Effect [J]. Progress in Chemistry, 2022, 34(10): 2302-2315.
[15] Haodong Ji, Juanjuan Qi, Maosheng Zheng, Chenyuan Dang, Long Chen, Taobo Huang, Wen Liu. Application of Nanotechnology for Virus Inactivation in Water:Implications for Transmission-Blocking of the Novel Coronavirus SARS-CoV-2 [J]. Progress in Chemistry, 2022, 34(1): 207-226.
Viewed
Full text


Abstract

Organic Radical Reactions in Water Medium