中文
Announcement
More
Progress in Chemistry 2018, Vol. 30 Issue (7): 879-887 DOI: 10.7536/PC180222 Previous Articles   Next Articles

• Review •

Triplet-Triplet Annihilation-Based Upconversion in Supramolecular System

Hongchuan Fan1,2, Dong Yang1,2, Pengfei Duan1*   

  1. 1. Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology(NCNST), Beijing 100190, China;
    2. College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 101408, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No. 51673050).
PDF ( 907 ) Cited
Export

EndNote

Ris

BibTeX

Self-assembly is an essential process that can precisely organize molecules into supramolecular systems by artificial control. Introducing this concept into triplet-triplet annihilation-based upconversion(TTA-UC) system, triplet-triplet energy transfer and triplet-triplet annihilation can be regulated easily, thus the upconversion emission efficiency might be significantly improved. This review concentrates on the research progress about supramolecular system-based TTA-UC, including organogel, membrane, nanoparticles, polymer films, host-guest complexes, etc. Instead of conventional solution system, supramolecular systems provide ideal matrixes, which not only avoid the fluorescence quenching caused by aggregation and phase-segregation of dye molecules, but also prevent the triplet oxygen caused quenching. Meanwhile, supramolecular systems are facile enough to integrate TTA-UC system into devices. Furthermore, integrating TTA-UC and different supramolecular systems, variety properties can be achieved, such as temperature responsibility, all-or-none switching, and so on. In brief, supramolecular systems make TTA-UC system more potential to be applied in many fields, such as photonic devices, solar cell, nano-medical, bio-imagining and so forth.
Contents
1 Introduction
2 Triplet-triplet annihilation-based photon upconversion
3 Research progress of the upconvertion supramolecular systems
3.1 Upconversion in gel system
3.2 Upconversion in membrane system
3.3 Upconversion in polymer nanoparticle system
3.4 Upconversion in host-guest complex system
3.5 Upconversion in polymer film system
4 Conclusion and outlook

CLC Number: 

[1] Parker C A, Hatchard C G. Trans. Faraday Soc., 1963, 59:284.
[2] Kimizuka N, Yanai N, Morikawa M A. Langmuir, 2016, 32:12304.
[3] Monguzzi A, Mezyk J, Scotognella F, Tubino R, Meinardi F. Phys. Rev. B, 2008, 78.
[4] Zhao J Z, Wu W H, Sun J F, Guo S. Chem. Soc. Rev., 2013, 42:5323.
[5] Ogawa T, Yanai N, Monguzzi A, Kimizuka N. Sci. Rep., 2015, 5:10882.
[6] Ye C Q, Zhou L W, Wang X M, Liang Z Q. Phys. Chem. Chem. Phys., 2016, 18:10818.
[7] 赵兵(Zhao B), 祁宁(Qi N), 张克勤(Zhang K Q). 化学进展(Prog. Chem.), 2016, 28:1615.
[8] 刘政(Liu Z), 孙丽宁(Sun L N), 施利毅(Shi L Y), 张登松(Zhang D S). 化学进展(Prog. Chem.), 2011, 23:153.
[9] 刘涛(Liu T), 孙丽宁(Sun L N), 刘政(Liu Z), 仇衍楠(Qiu Y N), 施利毅(Shi L Y).化学进展(Prog. Chem.), 2012, 24:304.
[10] Duan P, Yanai N, Kimizuka N. J. Am. Chem. Soc., 2013, 135:19056.
[11] Duan P, Yanai N, Kimizuka N. Chem. Commun., 2014, 50:13111.
[12] 王栋东(Wang D D), 董化(Dong H), 雷小丽(Lei X L), 于跃(Yu Y), 焦博(Jiao B), 吴朝新(Wu Z X). 化学进展(Prog. Chem.), 2015, 27:492.
[13] Duan P, Cao H, Zhang L, Liu M. Soft Matter, 2014, 10:5428.
[14] Duan P, Li Y, Jiang J, Wang T, Liu M. Sci. China Chem., 2011, 54:1051.
[15] Liu M, Zhang L, Wang T. Chem. Rev., 2015, 115:7304.
[16] 袁青(Yuan Q), 张莉(Zhang L), 黄昕(Huang X),姜思光(Jiang S G),刘鸣华(Liu M H). 化学进展(Prog. Chem.), 2005, 17:780.
[17] 靳清贤(Jin Q X), 李晶(Li J), 李孝刚(Li X G), 张莉(Zhang L), 方少明(Fang S M), 刘鸣华(Liu M H). 化学进展(Prog. Chem.), 2014, 26:919.
[18] Huo S, Duan P, Jiao T, Peng Q, Liu M. Angew. Chem. Int. Ed., 2017, 56:12174.
[19] Shi Y, Duan P, Huo S, Li Y, Liu M. Adv. Mater., 2018, 30:1705011.
[20] Yang D, Duan P, Zhang L, Liu M. Nat. Commun., 2017, 8:15727.
[21] Liu X C, Fei J B, Zhu P L, Li J B. Chem. Asian J., 2016, 11:2700.
[22] Duan P, Yanai N, Nagatomi H, Kimizuka N. J. Am. Chem. Soc., 2015, 137:1887.
[23] Duan P, Asthana D, Nakashima T, Kawai T, Yanai N, Kimizuka N. Faraday Discuss., 2017, 196:305.
[24] Duan P, Yanai N, Kurashige Y, Kimizuka N. Angew. Chem. Int. Ed., 2015, 54:7544.
[25] 郭培志(Guo P Z), 刘鸣华(Liu M H), 赵修松(Zhao X S). 化学进展(Prog. Chem.), 2008, 20:644.
[26] Huang X, Li C, Jiang S G, Wang X S, Zhang B W, Liu M H. J. Am. Chem. Soc., 2004, 126:1322.
[27] Qiu Y F, Chen P L, Liu M H. J. Am. Chem. Soc., 2010, 132:9644.
[28] Yuan J, Liu M H. J. Am. Chem. Soc., 2003, 125:5051.
[29] Kouno H, Ogawa T, Amemori S, Mahato P, Yanai N, Kimizuka N. Chem. Sci., 2016, 7:5224.
[30] Poznik M, Faltermeier U, Dick B, König B. RSC Adv., 2016, 6:41947.
[31] Chen G Y, Qiu H L, Prasad P N, Chen X Y. Chem. Rev., 2014, 114:5161.
[32] Liu Q, Wang W P, Zhan C Y, Yang T S, Kohane D S. Nano Lett., 2016, 16:4516.
[33] Wang W P, Liu Q, Zhan C Y, Barhoumi A, Yang T S, Wylie R G, Armstrong P A, Kohane D S. Nano Lett., 2015, 15:6332.
[34] Kim J H, Kim J H. J. Am. Chem. Soc., 2012, 134:17478.
[35] Katta K, Busko D, Avlasevich Y, Munoz-Espi R, Baluschev S, Landfester K. Macromol. Rapid Commun., 2015, 36:1084.
[36] Simon Y C, Weder C. J. Mater. Chem., 2012, 22:20817.
[37] Kang J H, Reichmanis E. Angew. Chem. Int. Ed., 2012, 51:11841.
[38] Thevenaz D C, Monguzzi A, Vanhecke D, Vadrucci R, Meinardi F, Simon Y C, Weder C. Mater. Horizons, 2016, 3:602.
[39] Liu Q, Yin B R, Yang T S, Yang Y C, Shen Z, Yao P, Li F Y. J. Am. Chem. Soc., 2013, 135:5029.
[40] Fan C Y, Wu W H, Chruma J J, Zhao J Z, Yang C. J. Am. Chem. Soc., 2016, 138:15405.
[41] Amemori S, Sasaki Y, Yanai N, Kimizuka N. J. Am. Chem. Soc., 2016, 138:8702.
[42] Deng F, Sommer J R, Myahkostupov M, Schanze K S, Castellano F N. Chem. Commun., 2013, 49:7406.
[43] Guo S, Xu L, Xu K J, Zhao J Z, Küçüköz B, Karatay A, Yaglioglu H G, Hayvali M, Elmali A. Chem. Sci., 2015, 6:3724.
[44] Filatov M A, Etzold F, Gehrig D, Laquai F, Busko D, Landfester K, Baluschev S. Dalton Trans., 2015, 44:19207.
[45] Yu S, Zeng Y, Chen J P, Yu T J, Zhang X H, Yang G Q, Li Y Y. RSC Adv., 2015, 5:70640.
[46] Mahato P, Monguzzi A, Yanai N, Yamada T, Kimizuka N. Nat. Mater., 2015, 14:924.
[47] Jiang Z, Xu M, Li F Y, Yu Y L. J. Am. Chem. Soc., 2013, 135:16446.
[48] Zhou J, Liu Q, Feng W, Sun Y, Li F Y. Chem. Rev., 2015, 115:395.
[1] Dongxue Han, Xue Jin, Wangen Miao, Tifeng Jiao, Pengfei Duan. Responsiveness of Excited State Chirality Based on Supramolecular Assembly [J]. Progress in Chemistry, 2022, 34(6): 1252-1262.
[2] Juntong Li, Yanping Huo, Mengjuan Liu, Huaqiang Zeng. Phase-Selective Organogelators for Oil Spill Treatment [J]. Progress in Chemistry, 2017, 29(6): 617-627.
[3] Wang Kerang. Chiral Supramolecular Assemblies Based on Aromatic Molecules-Carbohydrate Conjugates and Their Applications [J]. Progress in Chemistry, 2015, 27(6): 775-784.
[4] Wang Jun, Zhang Afang. Peptide-Mediated Supramolecular Helical Polymers [J]. Progress in Chemistry, 2015, 27(10): 1413-1424.
[5] Tao Li, Huo Zhipeng*, Pan Xu, Zhang Changneng, Dai Songyuan*. Development and Application of Low Molecular Mass Organogelators in Quasi-Solid-State Dye-Sensitized Solar Cells [J]. Progress in Chemistry, 2013, 25(06): 990-998.
[6] Zhang Xinglin, Yang Huiran, Sun Huibin, Liu Shujuan, Zhao Qiang*, Huang Wei*. Development of Energy Upconversion Based on Triplet-Triplet Annihilation [J]. Progress in Chemistry, 2012, (10): 1880-1889.
[7] Zhou Yifeng. Environmental Responsive Smart Low Molecule Organogel Materials [J]. Progress in Chemistry, 2011, 23(01): 125-135.
[8] . Click Chemistry and Functional Organic/ Polymeric Materials [J]. Progress in Chemistry, 2010, 22(0203): 406-416.
[9] Guo Peizhi1,2** Liu Minghua3** Zhao Xiusong1,2. Studies of Chiroptical Switch [J]. Progress in Chemistry, 2008, 20(05): 644-649.
[10] Yuan Qing,Zhang Li,Huang Xin,Jiang Siguang,Liu Minghua**. Progress in Chiral Supramolecular Assembling [J]. Progress in Chemistry, 2005, 17(05): 780-788.