中文
Announcement
More
Progress in Chemistry 2018, Vol. 30 Issue (8): 1172-1185 DOI: 10.7536/PC180221 Previous Articles   Next Articles

• Review •

Two-Photon Absorptive Multinuclear Complexes

Xinda Yang, Qin Jiang, Pengfei Shi*   

  1. Department of Chemistry, Huaihai Institute of Technology, Lianyungang 222005, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No. 21101069) and the Key Scientific Project of Lianyungang City(No.CG1517).
PDF ( 379 ) Cited
Export

EndNote

Ris

BibTeX

Two-photon absorption (TPA) materials have wide range of applications in the upconversion luminescent material, bioimaging, photodynamic therapy, three-dimensional lithographic microfabrication, etc. By using metal centers as template, metal complexes can combine several TPA active organic ligands into a complicate multipolar system to achieve enhanced TPA effect. The resulting two-photon absorptive material also displays better stability, extended emission lifetime and optimized spectral range when compared with the pure ligands. The "cooperative enhancement" effect in the TPA cross-section of multinuclear metal complex has drawn broad attention. In this paper, representative multinuclear complexes(homonuclear and heteronuclear) are selected to study the influencing factors on their TPA properties, such as the type and amount of metal ions, the structure of ligand molecules and complexes, etc. Special attention is paid to the mechanism of their photophysical properties that explain the structure and energy level of the excited states, the mode and direction of energy transfer in the multinuclear complexes, hoping to summarize the molecular design rules for TPA active multinuclear complexes. Finally, the existing problems in the research of multinuclear complexes with two-photon activity are described and studies on the "bifunctional multinuclear" complex are prospected, which will provide an important base for future development of novel two-photon absorptive materials.
Contents
1 Introduction
2 Homometallic multinuclear complexes
2.1 Multinuclear platinum complex
2.2 Multinuclear ruthenium complexes
2.3 Multinuclear zinc complexes
2.4 Multinuclear iridium complexes
2.5 Multinuclear iron complexes
2.6 Copper clusters
2.7 Gold clusters
2.8 Other metal complexes
3 Heterometallic multinuclear complexes
3.1 d-f type heteronuclear complex
3.2 d-d type heteronuclear complex
3.3 Clusters and MOF Structures
3.4 Biological applications of heterometallic complexes
4 Conclusion and outlook

CLC Number: 

[1] He G S, Tan L S, Zheng Q D, Prasad P N. Chem. Rev., 2008, 108:1245.
[2] Das S, Nag A, Goswami D, Bharadwaj P K. J. Am. Chem. Soc., 2006, 128:402.
[3] Bozec H L, Bouder T L, Maury O, Ledoux I, Zyss J. J. Opt. A:Pure Appl. Opt., 2002, 4:S189.
[4] Chen Y, Guan R, Zhang C, Huang J J, Ji L N, Chao H. Coordin. Chem. Rev., 2016, 310:16.
[5] Esipova T V, Rivera-Jacquez H J, Weber B, Masunov A E, Vinogradov S A. J. Am. Chem. Soc., 2016, 138:15648.
[6] Tao C H, Yam V W W. J. Photoch. Photobio. C, 2009, 10:130.
[7] Wang D, Zou L Y, Huang S, Feng J K, Ren A M. Dyes Pigments, 2014, 105:75.
[8] Vivas M G, Boni L D, Cooper T M, Mendonca C R. J. Phys. Chem. A, 2014, 118:5608.
[9] Vivas M G, Boni L D, Cooper T M, Mendonca C R. ACS Photonics, 2014, 1:106.
[10] Tao C H, Yang H, Zhu N Y, Yam V W W, Xu S J. Organometallics, 2008, 27:5453.
[11] Chan C K M, Tao C H, Li K F, Wong K M C, Zhu N Y, Cheah K W, Yam V W W. Dalton Trans., 2011, 40:10670.
[12] Samoc M, Dalton G T, Gladysz J A, Zheng Q L, Velkov Y, Ågren H, Norman P, Humphrey M G. Inorg. Chem., 2008, 47:9946.
[13] Goudreault T, He Z, Guo Y H, Ho C L, Zhan H M, Wang Q W, Ho K Y F, Wong K L, Fortin D, Yao B, Xie Z Y, Wang L X, Kwok W M, Harvey P D, Wong W Y. Macromolecules, 2010, 43:7936.
[14] Dubinina G G, Price R S, Abboud K A, Wicks G, Wnuk P, Stepanenko Y, Drobizhev M, Rebane A, Schanze K S. J. Am. Chem. Soc., 2012, 134:19346.
[15] Price R S, Dubinina G, Wicks G, Drobizhev M, Rebane A, Schanze K S. ACS Appl. Mater. Inter., 2015, 7:10795.
[16] Shelton A H, Price S, Brokmann L, Dettlaff B, Schanze K S. ACS Appl. Mater. Inter., 2013, 5:7867.
[17] Ho Y M, Au N P B, Wong K L, Chan C T L, Kwok W M, Law G L, Tang K K, Wong W Y, Ma C H E, Lam M H W. Chem. Commun., 2014, 50:4161.
[18] Bozec H L, Bouder T L, Maury O, Bondon A, Ledoux I,Deveau S, Zyss J. Adv. Mater., 2001, 13:1677.
[19] Xu W C, Zuo J R, Wang L L, Ji L N, Chao H. Chem. Commun., 2014, 50:2123.
[20] Zhang P Y, Pei L M, Chen Y, Xu W C, Lin Q T, Wang J Q, Wu J H, Shen Y, Ji L N, Chao H. Chem. Eur. J., 2013, 19:15494.
[21] Yu B L, Ouyang C, Qiu K Q, Zhao J, Ji L N, Chao H. Chem. Eur. J., 2015, 21:3691.
[22] Yu B L, Ouyang C, Huang H Y, Ji L N, Chao H. Chem. Commun., 2013, 49:810.
[23] Baggaley E, Gill M R, Green N H, Turton D, Sazanovich I V, Botchway S W, Smythe C, Haycock J W, Weinstein J A, Thomas J A. Angew. Chem. Int. Edit., 2014, 53:3367.
[24] Hanczyc P, Norden B, Samoc M. Dalton Trans., 2012, 41:3123.
[25] Samoc M, Morrall J P, Dalton G T, Cifuentes M P, Humphrey M G. Angew. Chem. Int. Edit., 2007, 46:731.
[26] Roberts R L, Schwich T, Corkery T. C, Cifuentes, M P, Green K A, Farmer J D, Low P J, Marder T B, Samoc M, Humphrey M G. Adv. Mater., 2009, 21:2318.
[27] Green K A, Simpson P V, Corkery T C, Cifuentes M P, Samoc M, Humphrey M G. Macromol. Rapid Comm., 2012, 33:573.
[28] Simpson P V, Watson L A, Barlow A, Wang G, Cifuentes M P, Humphrey M G. Angew. Chem. Int. Edit., 2016, 55:2387.
[29] Gao B B, Mazur L M, Morshedi M, Barlow A, Wang H,Quintana C, Zhang C, Samoc M, Cifuentesac M P, Humphrey M G. Chem. Commun., 2016, 52:8301.
[30] Yang L, Zhao X H, Zhou H P, Wu J Y, Yang J X, Shao G Q,Tian Y P. Transit. Metal. Chem., 2008, 33(4):431.
[31] Zhang W X, Li B, Ma H P, Zhang L M, Guan Y L, Zhang Y H, Zhang X D, Jing P T, Yue S M. ACS Appl. Mater. Inter., 2016, 8:21465.
[32] Chen Y C, Bai Y, Han Z, He W J, Guo Z J. Chem. Soc. Rev., 2015,44:4517.
[33] Ogaw K, Kobuke Y. Biomed. Res. Int., 2013, 2013:125658.
[34] Drobizhev M, Stepanenko Y, Rebane A, Wilson C J, Screen T E O, Anderson H L. J. Am. Chem. Soc., 2006, 128:12432.
[35] Mikhaylov A, Kondratuk D V, Cnossen A, Anderson H L,Drobizhev M, Rebane A. J. Phys. Chem. C, 2016, 120:11663.
[36] Easwaramoorthi S, Jang S Y, Yoon Z S, Lim J M, Lee C W, Mai C L, Liu Y C, Yeh C Y, Vura-Weis J, Wasielewski M R,Kim D. J. Phys. Chem. A, 2008, 112:6563.
[37] Hunter C A, Anderson H L. Angew. Chem. Int. Edit., 2009, 48:7488.
[38] Varnavski O, Raymond J E, Yoon Z S, Yotsutuji T, Ogawa K, Kobuke Y, Goodson T. J. Phys. Chem. C, 2014, 118:28474.
[39] Kwon J H, Ahn T K, Yoon M C, Kim D Y, Koh M K, Kim D. J. Phys. Chem. B, 2006, 110:11683.
[40] Shi P F, Jiang Q, Zhao X S, Zhang Q, Tian Y P. Dalton Trans., 2015, 44:8041.
[41] He T C, Rajwar D, Ma L, Wang Y, Lim Z B, Grimsdale A C, Sun H D. Appl. Phys. Lett., 2012, 101:213302.
[42] He T C, Chen R, Lim Z B, Rajwar D, Ma L, Wang Y, Gao Y, Grimsdale A C, Sun H D. Adv. Opt. Mater., 2014, 2:40.
[43] Chung S, Kim K, Lin T, He G S, Swiatkiewicz J, Prasad P N. J. Phys. Chem. B, 1999, 103:10741.
[44] Huang S, Yang B Z, Jiang X F, Ren A M. J. Mol. Model., 2016, 22:34.
[45] Xu W J, Liu S J, Zhao X, Zhao N, Liu Z Q, Xu H, Liang H, Zhao Q, Yu X Q, Huang W. Chem. Eur. J., 2013, 19:621.
[46] Li G Y, Chen Y, Wang J Q, Wu J H, Gasser G, Ji L N, Chao H. Biomaterials, 2015, 63:128.
[47] Maggioni D, Galli M, D'Alfonso L, Inverso D, Dozzi M V, Sironi L, Iannacone M, Collini M, Ferruti P, Ranucci E, D'Alfonso G. Inorg. Chem., 2015, 54:544.
[48] Chabera P, Liu Y Z, Warnmark K. Nature, 2017, 543:695.
[49] Hou Y X, Zhu Y Z, Sun J S, Zhang X M, Tian Y P, Jiang J Z. CrystEngComm., 2015, 17:4699.
[50] Bernard R, Cornu D, Baldeck P L, Caslavsky J, Letoffe J M, Scharff J P, Miele P. Dalton Trans., 2005, 18:3065.
[51] Ju W W, Zhang H T, Xu X, Zhang Y, Xu Y. Inorg. Chem., 2014, 53:3269.
[52] Jian F F, Xiao H L, Bai Z S, Zhao P. J. Mater. Chem., 2006, 16:3746.
[53] Cifuentes M P, Humphrey M G, Morrall J P, Samoc M, Paul F, Lapinte C, Roisnel T. Organometallics, 2005, 24:4280.
[54] Wang X C, Tian X H, Zhang Q, Sun P P, Wu J Y, Zhou H P, Jin B K, Yang J X, Zhang S Y, Wang C K, Tao X T, Jiang M H, Tian Y P. Chem. Mater., 2012, 24:954.
[55] Wang H, Hossain A M S, Zhang Q, Wu J Y, Tian Y P. Inorg. Chim. Acta, 2014, 414:153.
[56] Mori S, Kim K S, Yoon Z S, Noh S B, Kim D H, Osuka A. J. Am. Chem. Soc., 2007, 129:11344.
[57] Koshel E I, Chelushkin P S, Melnikov A S, Serdobintsev P Y, Stolbovaia A Y, Saifitdinova A F, Shcheslaskiy V I, Chernyavskiy O, Gaginskaya E R, Koshevoy I O, Tunik S P. J. Phototh. Photobio. A, 2017, 332:122.
[58] Chandrasekhar V, Azhakar R, Murugesapandian B, Senapati T, Bag P, Pandey M D, Maurya S K, Goswami D. Inorg. Chem., 2010, 49:4008.
[59] Li D M, Tian X H, Hu G J, Zhang Q, Wang P, Sun P P, Zhou H P, Meng X M, Yang J X, Wu J Y, Jin B K, Zhang S Y, Tao X T, Tian Y P. Inorg. Chem., 2011, 50:7997.
[60] Li D D, Zhang Q, Wang X C, Li S L, Zhou H P, Wu J Y, Tian Y P. Dyes Pigments, 2015, 120:175.
[61] Zhou Y H, Zhou X L, Zhou S R, Zhou L L, Wei Z H, Liang J Y, Tian Y P, Wu J Y, Wang Z Y. Mol. Cryst. Liq. Cryst., 2016, 631:187.
[62] Li D M, Hu R T, Zhou W, Sun P P, Kan Y H, Tian Y P, Zhou H P, Wu J Y, Tao X T, Jiang M H. Eur. J. Inorg. Chem., 2009, 18:2664.
[63] Zhao X S, Liu J, Wang H, Zou Y, Li S, Zhang S Y, Zhou H P, Wu J Y, Tian Y P. Dalton Trans., 2015, 44:701.
[64] Pushkarev A P, Balashova T V, Kukinov A A, Arsenyev M V, Yablonskiy A N, Kryzhkov D I, Andreev B A, Rumyantcev R V, Fukin G K, Bochkarev M N. Dalton Trans., 2017, 46:10408.
[65] Edkins R M, Sykes D, Beeby A, Ward M D. Chem. Commun., 2012, 48:9977.
[66] Baggaley E, Cao D K, Sykes D, Botchway S W, Weinstein J A, Ward M D. Chem. Eur. J., 2014, 20:8898.
[67] Jana A, Crowston B J, Shewring J R, McKenzie L K, Bryant H E, Botchway S W, Ward A D, Amoroso A J, Baggaley E, Ward M D. Inorg. Chem., 2016, 55:5623.
[68] Pasatoiu T D, Madalan A M, Zamfirescu M, Tiseanu C, Andruh M. Phys. Chem. Chem. Phys., 2012, 14:11448.
[69] Hurst S K, Humphrey M G, Morrall J P, Cifuentes M P, Samoc M, Luther-Davies B, Heath G A, Willis A C. J. Organomet. Chem., 2003, 670:56.
[70] Coe B J, Foxon S P, Helliwell M, Rusanova D, Brunschwig B S, Clays K, Depotter G, Nyk M, Samoc M, Wawrzynczyk D, Garin J, Orduna J. Chem. Eur. J., 2013, 19:6613.
[71] Shi P F, Coe B J, Sánchez S, Wang D Q, Tian Y P, Nyk M, Samoc M. Inorg. Chem., 2015, 54:11450.
[72] Ge Q C, Corkery T C, Humphrey M G, Samoc M, Hor T S A. Dalton Trans., 2009, 31:6192.
[73] Ho M L, Lin M H, Chen Y T, Sheu H S. Chem. Phys. Lett., 2011, 509:162.
[74] Zhao H J, Simpson P V, Barlow A, Moxey G J, Morshedi M, Roy N, Philip R, Zhang C, Cifuentes M P, Humphrey M G. Chem. Eur. J., 2015, 21:11843.
[75] Lin Y C, Chou P T, Koshevoy I O, Pakkanen T A. J. Phys. Chem. A, 2009, 113:9270.
[76] Kent C A, Mehl B P, Ma L Q, Papanikolas J M, Meyer T J, Lin W. J. Am. Chem. Soc., 2010, 132:12767.
[77] Yan C, Li K, Wei S C, Wang H P, Fu L, Pan M, Su C Y. J. Mater. Chem., 2012, 22:9846.
[78] Zhang Y, Huang L, Miao H, Wan H X, Mei H, Liu Y, Xu Y. Chem. Eur. J., 2015, 21:3234.
[79] Li H G, Lan R F, Chan C F, Jiang L J, Dai L X, Kwong D W J, Lam M H W, Wong K L. Chem. Commun., 2015, 51:14022.
[80] Zhang J X, Zhou J W, Chan C F, Lau T C K, Kwong D W J, Tam H L, Mak N K, Wong K L, Wong W K. Bioconjugate Chem., 2012, 23:1623.
[81] Schmitt J, Heitz V, Sour A, Bolze F, Kessler P, Flamigni L, Ventura B, Bonnet C S, Toth E. Chem. Eur. J., 2016, 22:2775.
[82] Belyaev A A, Krupenya D V, Grachova E V, Gurzhiy V V, Melnikov A S, Serdobintsev P Y, Sinitsyna E S, Vlakh E G, Tennikova T B, Tunik S P. Bioconjugate Chem., 2016, 27:143.
[83] Tabrizi L, Chiniforoshan H. RSC Adv., 2016, 6:93349.
[1] Hui Zhao, Wenbo Hu, Quli Fan. Two-Photon Fluorescence Probe in Bio-Sensor [J]. Progress in Chemistry, 2022, 34(4): 815-823.
[2] Jiaen Xie, Yuheng Luo, Qianling Zhang, Pingyu Zhang. Metal Complexes in Application of Two-Photon Luminescence Probes [J]. Progress in Chemistry, 2021, 33(1): 111-123.
[3] Xinjuan Zeng, Li Wang, Pihui Pi, Jiang Cheng, Xiufang Wen, Yu Qian. Development and Research of Special Wettability Materials for Oil/Water Separation [J]. Progress in Chemistry, 2018, 30(1): 73-86.
[4] Zhang Yongjie, Li Huayi, Qu Minjie, Feng Na, Yang Wei, Zhang Chong. Well-Defined Polyolefin Graft Copolymers: Syntheses, Structures, and Properties [J]. Progress in Chemistry, 2016, 28(11): 1634-1647.
[5] Ren Xiaojie, Lu Xiaomei, Fan Quli, Huang Wei. Conjugated Polymers with Two-Photon Absorption for Bioimaging [J]. Progress in Chemistry, 2013, 25(10): 1739-1750.
[6] Tong Minman, Zhao Xudong, Xie Liting, Liu Dahuan, Yang Qingyuan, Zhong Chongli. Treatment of Waste Water Using Metal-Organic Frameworks [J]. Progress in Chemistry, 2012, (9): 1646-1655.
[7] Zhao Yongsheng, Zhang Xiangping, Zhao Jihong, Zhang Hongzhong, Kang Xuejing, Dong Feng. Research of QSPR/QSAR for Ionic Liquids [J]. Progress in Chemistry, 2012, 24(07): 1236-1244.
[8] Xia Rongjie, Jin Ming, Wan Decheng, Pan Haiyan, Pu Hongting. Two-Photon Activable Photoacid Generators and Their Applications [J]. Progress in Chemistry, 2011, 23(9): 1854-1861.
[9] Huang Chibao, Yi Daosheng, Feng Chenghao, Ren Anxiang, Sun Shiguo. Two-Photon Fluorescence Sensors [J]. Progress in Chemistry, 2010, 22(12): 2408-2419.
[10] Zhang Suojiang Yao Xiaoqian Liu Xiaomin. Structure-Property Relationships and Applications of Ionic Liquids [J]. Progress in Chemistry, 2009, 21(11): 2465-2473.
[11] Zheng Yansheng Mo Qian Liu Zhaoming. The Studies of QSPR/QSAR for Ionic Liquids [J]. Progress in Chemistry, 2009, 21(09): 1772-1781.
[12]

Fang Lei|Huang Jun|Yu Gang**

. Photochemical Degradation of Polybrominated Diphenyl Ethers [J]. Progress in Chemistry, 2008, 20(0708): 1180-1186.
[13] Niu Junfeng,Yu Gang**,Liu Xitao. Advances in Photolysis of Persistent Organic Pollutants in Water [J]. Progress in Chemistry, 2005, 17(05): 938-948.
[14] Ma Wenbo*,Wu Yiqun,Gu Donghong,Gan Fuxi. Two-Photon Absorbed Organic Materials and Application in Three-Dimensional Digital Optical Data Storage [J]. Progress in Chemistry, 2004, 16(04): 631-.