中文
Announcement
More
Progress in Chemistry 2018, Vol. 30 Issue (11): 1681-1691 DOI: 10.7536/PC180216 Previous Articles   Next Articles

• Review •

Doped-Graphene in Lithium-Sulfur Batteries

Rong Yang1*, Lan Li1, Bing Ren2, Dan Chen1, Liping Chen3, Yinglin Yan1   

  1. 1. School of Science, Xi'an University of Technology, Xi'an 710054, China;
    2. Shaanxi Applied Physics and Chemistry Research Institute(CNGC21);
    3. School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the International Science Technology Cooperation Program of China(No. 2015DFR50350), the National Natural Science Foundation of China(No. 21503166), the Science and Technology Project of Shaanxi Province(No. 2017GY-160), and the Basic Research Plan of Natural Science Funded by Shaanxi Science and Technology Department(No. 2017JQ5055).
PDF ( 1119 ) Cited
Export

EndNote

Ris

BibTeX

Lithium-sulfur (Li-S) battery is a kind of rechargeable batteries with lithium as negative electrode and sulfur as positive electrode. It has a high theoretical specific capacity of 1675 mA·h/g and a specific energy density of 2600 W·h/kg. Theoretically, Li-S batteries can boost capacity fivefold over the current lithium-ion batteries, enabling it as a candidate of the most promising lithium-ion batteries. Due to the insulativity of sulfur and the easy dissolution of sulfur as active material to form polysulfide ions as electrochemical reaction intermediate material in the electrolyte during the process of charging and discharging, the poor cycle stability and high self-discharge of Li-S batteries result in the realizable energy density achieved far below the theoretical value. In this review, we target heteroatom-doped graphene, which has been widely used in Li-S batteries because of its retained excellent conductivity of graphene as well as strong adsorption to lithium polysulfide(LiPS) derived from a certain amount of defects and active sites of doped graphene. The adsorption can effectively alleviate the "shuttle effect" in the charge and discharge process and improve the cycling stability and cycling rate performance of Li-S batteries. This paper reviews current research state of heteroatom-doped graphene(such as N, P, S, B) in the Li-S batteries in terms of single-atom doping and diatomic doping. The advantages and mechanism of nitrogen-doped, nitrogen-sulfur co-doped and other doped graphene applied to Li-S batteries are analyzed utterly. Finally, the effect of battery performance is classified based on doping amount, doping form, doping location, and so on. The development direction and prospect of heteroatom-doped graphene are also predicted and forecast.
Contents
1 Introduction
2 Working principle of lithium-sulfur batteries
3 Monoatomic doping of graphene
3.1 Nitrogen-doped graphene
3.2 Boron-doped graphene
4 Diatom-doped graphene
4.1 Nitrogen and sulfur co-doped graphene
4.2 Boron and nitrogen co-doped graphene
4.3 Other heteroatoms doped graphene
5 Conclusion and outlook

CLC Number: 

[1] 吕鹏(Lv P), 冯奕钰(Feng Y Y), 张学全(Zhang X Q), 李瑀(Li Y), 封伟(Feng W). 中国科学:技术科学(Science China Technologica), 2010, 11(11):1247.
[2] Li G X, Sun J H, Hou W P, Jiang S D, Huang Y, Geng J X. Nature Communications, 2016, 7:10601.
[3] Zhou X Y, Liao Q C, Tang J J, Bai T, Chen F, Yang J. Journal of Electroanalytical Chemistry, 2016, 768:55.
[4] Li Y Y, Wang L, Gao B, Li X X, Cai Q F, Li Q W, Peng X. Electrochimica Acta, 2017, 229:352.
[5] Li Z, Jiang Y, Yuan L X, Yi Z Q, Wu C, Liu Y, Strasser P, Huang Y H. ACS Nano, 2014, 8:9295.
[6] Li H, Sun L, Wang G. ACS Applied Materials & Interfaces, 2016, 8:6061.
[7] Cheng X B. Annual Meeting of China Chemical Industry Association, Beijing, 2015.
[8] Guo J, Xu Y, Wang C. Nano Letters, 2011, 11:4288.
[9] Ma L, Zuang H L, Wei S Y, Hendrickson D E, Kim M S, Cohn G, Hennig R G, Archer L A. ACS Nano, 2016, 10:1050.
[10] Zeng L, Jiang Y, Xu J, Wang M, Li W, Yu Y. Nanoscale, 2015, 7:10940.
[11] Shi Z, Jin G, Wang J, Zhang J. Journal of Electroanalytical Chemistry, 2017, 795:26.
[12] Lei F, Zuang H L, Zhang K H, Cooper V R, Li Q, Lu Y Y. Adv. Sci., 2016, 3:1600175.
[13] Li Z, Huang Y, Yuan L, Hao Z X, Huang Y H. Carbon, 2015, 92:41.
[14] Yan L L, Wang X X, Zhao S C, Li Y Q, Gao Z, Zhang B, Cao M S, Qin Y. ACS Applied Materials & Interfaces, 2017, 9:11116.
[15] Huang J K, Zhuang T Z, Zhang Q, Peng H J, Chen C M, Wei F. ACS Nano, 2015, 9:3002.
[16] Cao J, Chen C, Zhao Q, Zhang N, Lu Q Q, Wang X Y, Niu Z Q, Chen J. Advanced Materials, 2016, 28:9629.
[17] Hu X F, Leng K T, Zhang C J, Luo J Y. RSC Advances, 2018, 8:18502.
[18] Papandrea B, Xu X, Xu Y, Chen C Y, Lin Z Y, Wang G M, Luo Y Z, Liu M, Huang Y, Mai L Q, Duan X F. Nano Research, 2016, 9:240.
[19] Yao X Y, Huang N, Han F D, Zhang Q, Wan H L, Mwizerwaet J P, Wang C S, Xu X X. Advanced Energy Materials, 2017, 1602923.
[20] Hu G, Xu C, Sun Z, Wang S G, Cheng H M, Li F, Ren W C. Advanced Materials, 2016, 28:1603.
[21] Lu S, Cheng Y, Wu X, Liu J. Nano Letters, 2013, 13:2485.
[22] 杨蓉(Yang R), 李兰(Li L), 王黎晴(Wang L Q), 付欣(Fu X), 燕映霖(Yan Y L), 陈利萍(Chen L P), 路蕾蕾(Lu L L). 化工学报(CIESC Journal), 2017, 68(11):4333.
[23] Chen F B, Wang Y N, Wu B R, Xiong Y K, Liao W L, Wu F, Sun Z. Journal of Inorganic Materials, 2014, 29:627.
[24] Yang Y, Yu G, Cha J J, Wu H, Vosqueritchian M, Yao Y, Bao Z, Cui Y. ACS Nano, 2011, 5:9187.
[25] Chang C H, Chung S H, Manthiram A. Journal of Materials Chemistry A, 2015, 3:18829.
[26] Lei W, Dong W, Zhang F, Jin J. Nano Letters, 2013, 13:4206.
[27] Song M K, Zhang Y, Cairns E J. Nano Letters, 2013, 13:5891.
[28] Liao H, Wang H, Ding H, Meng X S, Xu H, Wang B S, Ai X P, Wang C. Journal of Materials Chemistry A, 2016, 4:7416.
[29] Liu J, Yuan L, Yuan K, Li Z, Hao Z, Xiang J, Huang Y. Nanoscale, 2016, 8:13638.
[30] Li Z, Zhang J, Lou X W. Angewandte Chemie, 2015, 54:12886.
[31] An T H, Deng D R, Lei M, Wu Q H, Tian Z W, Zheng M S, Dong Q F. J. Mater. Chem. A, 2016, 4:12858.
[32] Liu X, Huang J Q, Zhang Q, Mai L Q. Advanced Materials, 2017, 29:1601759.
[33] Cui Z, Zu C, Zhou W, Manthiram A, Goodenough J B. Advanced Materials, 2016, 28:6926.
[34] Ma G Q, Wen Z Y, Wang Q S, Jin J, Wu X W, Zhang J C. Journal of Inorganic Materials, 2015, 30:913.
[35] Hao Z, Yuan L, Chen C, Xiang J W, Li Y Y, Huang Z M, Hu P, Huang Y H. Journal of Materials Chemistry A, 2016, 45:17711.
[36] 李健(Li J), 官亦标(Guan Y B), 傅凯(Fu K), 苏岳锋(Su Y F), 包丽颖(Bao L Y), 吴锋(Wu F). 化学进展(Progress in Chemistry), 2014, 26(7):1233.
[37] 李宛飞(Li W F), 刘美男(Liu M N), 王健(Wang J), 张跃钢(Zhang Y G). 物理化学学报(Acta Physico-Chimica Sinica), 2017, 33(1):165.
[38] Song J, Xu T, Gorgin M L, Zhu P Y, Lv D P, Jiang Y B, Chen Y S, Duan Y H, Wang D H. Advanced Functional Materials, 2014, 24:1243.
[39] Wang H, Yang Y, Liang Y, Robinson J T, Li Y G, Jackson A, Cui Y, Dai H J. Nano Letters, 2011, 11:2644.
[40] Mikhaylik Y V, Akridge J R. Journal of the Electrochemical Society, 2004, 151:A1969.
[41] 陈旭(Chen X), 何大平(He D P), 木士春(Mu S C). 化学进展(Progress in Chemistry), 2013, 25(8):1292.
[42] Hou T Z, Peng H J, Huang J Q, Zhang Q, Li B. 2D Materials, 2015, 2.
[43] Qiu Y C, Li W F, Zhao W, Li G Z, Hou Y, Liu M N, Zhou L S, Ye F M, Li H F, Wei Z H, Yang S H, Daun W H, Ye Y F, Guo J H, Zhang Y G. Nano Letters, 2014, 14:4821.
[44] Li L, Zhou G M, Yin L C, Koratkar N, Li F, Cheng H M. Carbon, 2016, 108:120.
[45] Hao Y, Li X F, Sun X L, Wang C L. Materials Science and Engineering B, 2016, 213:83.
[46] Liu S K, Hong X B, Li Y J, Xu J, Zhen C M, Xie K. Chinese Chemical Letters, 2017, 28:412.
[47] Li C, Sui X L, Wang Z B, Wang Q, Gu D M. Chemical Engineering Journal, 2017, http://dx.doi.org/10.1016/j.cej.2017.05.154.
[48] Su D W, Cortie M, Wang G X. Advanced Energy Materials, 2017, 1602014.
[49] Zhang Z, Kong L L, Liu S, Li G R, Gao X P. Advanced Energy Materials, 2017, 7:1602543.
[50] Li Y J, Fan J M, Zheng M S, Dong Q F. Energy & Environmental Science, 2016, 9:1998.
[51] Yang R, Li L, Chen D, Chen L P, Ren B, Yan Y L, Xu Y H. Chemistryselect, 2017, 2:11697.
[52] Wang X W, Zhang Z A, Qu Y H, Lai Y Q, Li J. Journal of Power Sources, 2014, 256:361.
[53] Yan H, Cheng M, Zhong B, Chen Y X. Ionics, 2016, 22:1999.
[54] Yin L C, Liang J, Zhou G M, Li F, Saito R, Cheng H M. Nano Energy, 2016, 25:203.
[55] Singh G, Sutar D S, Divakar B V, Narayanam P K, Talwar S S, Srinivasa R S, Major S S. Nanotechnology, 2013, 24:355704.
[56] Yanilmaz A, Tomak A, Akbali B, Bacaksiz C, Ozceri E, Ari O, Senger R T, Selamet Y, Zareie H M. RSC Advances, 2017, 7:28383.
[57] 华文婷(Hua W T), 王鹏(Wang P), 孙雅馨(Sun Y X). 安徽工业大学学报(Journal of Anhui University of Technology), 2015, 32(4):325.
[58] Xie Y, Meng Z, Cai T W, Han W Q. ACS Applied Materials & Interfaces, 2015, 7:25202.
[59] 王璐(Wang L). 化学技术与开发(Technology & Development of Chemical Industry), 2016, 45(5):10.
[60] Denis P A, Huelmo C P, Iribarne F. Computational & Theoretical Chemistry, 2014, 1049:13.
[61] Zhou G M, Peak E, Hwang G S, Mathiram A. Nature Communication, 2015, 6:7760.
[62] Xu J, Su D W, Zhang W X, Bao W Z, Wang G X. Journal of Materials Chemistry A, 2016, 4:17381.
[63] Wang L, Yang Z, Nie H G, Gu C C, Hua W X, Xu X J, Chen X A, Chen Y, Huang S M. J. Mater. Chem. A, 2016, 4:15343.
[64] Yuan X Q, Liu B C, Hou H J, Zeinu K, He Y H, Yang X R, Xue W J, He X L, Huang L, Zhu X L, Wu L S, Hu J P, Yang J K, Xie J. RSC Advances, 2017, 7:22567.
[65] 高瑞玲(Gao G L), 缪灵(Miao L), 宋家琪(Song J Q), 吴忧(Wu Y). 全国功能材料科技与产业高层论坛(Functional Materials Technology and Industry Forum), 镇江(Zhenjiang), 2009.
[66] Cai W L, Zhou J B, Li G R, Zhang K L, Liu X Y, Wang C, Zhou H, Zhu Y C, Qian Y T. ACS Appl. Mater. Interfaces, 2016, 8:27679.
[67] Li F, Zhao J J, Su Y. Physical Chemistry Chemical Physics, 2016, 18:25241.
[68] Liang C, Feng J R, Zhou H H, Fu C P, Wang G C, Yang L M, Xu C X, Chen Z X, Yang W J, Kuang Y F. J. Mater. Chem. A, 2017, 5:7403.
[69] Gu X X, Tong C J, Lai C, Qiu J X, Huang X X, Yang W L, Wen B, Liu L M, Hou Y L, Zhang S Q. Journal of Materials Chemistry A, 2015, 3:16670.
[70] Xiao Z, Yang Z, Zjang L, Pan H, Wang R H. ACS Nano, 2017, 11(8):8488.
[71] Liu Z, Li J, Xiang J, Cheng S, Wu H, Zhang N, Yuan L X, Zhang W F, Xie J, Huang Y H, Chang H X. Physical Chemistry Chemical Physics, 2017, 19:2567.
[1] Yong Zhang, Hui Zhang, Yi Zhang, Lei Gao, Jianchen Lu, Jinming Cai. Surface Synthesis of Heteroatoms-Doped Graphene Nanoribbons [J]. Progress in Chemistry, 2023, 35(1): 105-118.
[2] Yaoyu Qiao, Xuehui Zhang, Xiaozhu Zhao, Chao Li, Naipu He. Preparation and Application of Graphene/Metal-Organic Frameworks Composites [J]. Progress in Chemistry, 2022, 34(5): 1181-1190.
[3] Hongji Jiang, Meili Wang, Zhiwei Lu, Shanghui Ye, Xiaochen Dong. Graphene-Based Artificial Intelligence Flexible Sensors [J]. Progress in Chemistry, 2022, 34(5): 1166-1180.
[4] Jingjing Li, Hongji Li, Qiang Huang, Zhe Chen. Study on the Mechanism of the Influence of Doping on the Properties of Cathode Materials of Sodium Ion Batteries [J]. Progress in Chemistry, 2022, 34(4): 857-869.
[5] Hui Zhang, Wei Xiong, Jianchen Lu, Jinming Cai. Magnetic Properties and Engineering of Nanographene in Ultra-High Vacuum [J]. Progress in Chemistry, 2022, 34(3): 557-567.
[6] Xiaoqiong Feng, Yunlong Ma, Hong Ning, Shiying Zhang, Changsheng An, Jinfeng Li. Transition Metal Chalcogenide Cathode Materials Applied in Aluminum-Ion Batteries [J]. Progress in Chemistry, 2022, 34(2): 319-327.
[7] Meng Pengfei, Zhang Xiaorong, Liao Shijun, Deng Yijie. Enhancing the Performance of Atomically Dispersed Carbon-Based Catalysts Through Metallic/Nonmetallic Elements Co-Doping Towards Oxygen Reduction [J]. Progress in Chemistry, 2022, 34(10): 2190-2201.
[8] Yun Lu, Hongjuan Shi, Yuefeng Su, Shuangyi Zhao, Lai Chen, Feng Wu. Application of Element-Doped Carbonaceous Materials in Lithium-Sulfur Batteries [J]. Progress in Chemistry, 2021, 33(9): 1598-1613.
[9] Kedi Cai, Shuang Yan, Tianye Xu, Xiaoshi Lang, Zhenhua Wang. Investigation of Electrode Materials for Lithium Ion Capacitor Battery [J]. Progress in Chemistry, 2021, 33(8): 1404-1413.
[10] Jinhuo Gao, Jiafeng Ruan, Yuepeng Pang, Hao Sun, Junhe Yang, Shiyou Zheng. High Temperature Properties of LiNi0.5Mn1.5O4 as Cathode Materials for High Voltage Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(8): 1390-1403.
[11] Yifan Zhao, Qiyun Mao, Xiaoya Zhai, Guoying Zhang. Structural Defects Regulation of Bismuth Molybdate Photocatalyst [J]. Progress in Chemistry, 2021, 33(8): 1331-1343.
[12] Xiaoxiao Xiang, Xiaowen Tian, Huie Liu, Shuang Chen, Yanan Zhu, Yuqin Bo. Controlled Preparation of Graphene-Based Aerogel Beads [J]. Progress in Chemistry, 2021, 33(7): 1092-1099.
[13] Lei Wu, Lihui Liu, Shufen Chen. Flexible Organic Light-Emitting Diodes Using Carbon-Based Transparent Electrodes [J]. Progress in Chemistry, 2021, 33(5): 802-817.
[14] Shihao Zhou, Xianwen Wu, Yanhong Xiang, Ling Zhu, Zhixiong Liu, Caixian Zhao. Manganese-Based Cathode Materials for Aqueous Zinc Ion Batteries [J]. Progress in Chemistry, 2021, 33(4): 649-669.
[15] Suye Lv, Liang Zou, Shouliang Guan, Hongbian Li. Application of Graphene in Neural Activity Recording [J]. Progress in Chemistry, 2021, 33(4): 568-580.
Viewed
Full text


Abstract

Doped-Graphene in Lithium-Sulfur Batteries