中文
Announcement
More
Progress in Chemistry 2018, Vol. 30 Issue (11): 1660-1668 DOI: 10.7536/PC180213 Previous Articles   Next Articles

• Review •

Islet Encapsulation and Its Application in Islet Transplantation

Yi Han1, Haiqing Dong1, Sheng Li2, Weida Li2, Yongyong Li1*   

  1. 1. Shanghai Tenth People's Hospital, Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai 200092;
    2. School of Life Science and Technology, Tongji University, Shanghai 200092, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No. 51773154, 31771090, 51473124).
PDF ( 428 ) Cited
Export

EndNote

Ris

BibTeX

With the rapid increase in number of diabetes patients in the world, there has been an urgent need for a clinically effective diabetes treatment. Islet transplantation is able to replace the impaired islets by implanting normal islets so as to maintain normal blood glucose level, which is recognized as an ideal treatment for diabetes. However, there is a shortage of islet donor resources, and the clinical outcome suffers from a variety of adverse reactions and even cancer risks for long-term use of immunosuppressive agents after transplantation. These challenges have greatly impeded the clinical application of islet transplantation. The applications of bio-derived or synthesized polymers(natural polymers, synthetic polymers, inorganic compounds and other biomaterials) to encapsulate islets enable to create an immune isolation microenvironment. These artificial constructs effectively inhibit immune rejection by avoiding the direct contact between host immune cells and implanted islets. In the application, the islet encapsulation is mandatory to keep the exchange capacity of essential key molecules, such as insulin, glucose and oxygen. This is necessary to ensure the normal physiological activity of transplanted islets and the ability to accurately control blood glucose level. This review summarizes the state-of-the-art of the field of islet encapsulation, including the introduction of the most employed materials, strategies of islet encapsulation, as well as the perspective.
Contents
1 Introduction
2 Advantages of islet encapsulation in islet transplantation
3 Encapsulation materials for islets and islet cells
3.1 Natural polymers
3.2 Synthetic macromolecules
3.3 Inorganic nanomaterials
4 Design strategy of encapsulation of islets and islet cells
4.1 Long-term immune isolation effect
4.2 Transportation of nutrients and oxygen
4.3 Biocompatibility of materials
4.4 Choice of the appropriate transplantation site
4.5 Suppression of the immune response around the graft
5 Conclusion and outlook

CLC Number: 

[1] Dagogo-Jack S. Diabetes Mellitus in Developing Countries and Underserved Communities. Cham:Springer International Publishing, 2017. 7.
[2] Tang Q, Desai T A. Nat. Med., 2016, 22:236.
[3] Markmann J F, Deng S, Huang X, Desai N M, Velidedeoglu E H, Lui C, Frank A, Markmann E, Palanjian M, Brayman K. Ann. Surg., 2003, 237:6.
[4] Robertson R P. New Engl. J. Med., 2004, 350:7.
[5] Dolgin E. Nature, 2016, 540:7632.
[6] Smith R M, Mandel T E. Immunol. Today., 2000, 21:1.
[7] Benthuysen J R, Carrano A C, Sander M. J. Clin. Invest., 2016, 126:10.
[8] Chang R, Faleo G, Russ H A, Parent A V, Elledge S K, Bernards D A, Allen J L, Villanueva K, Hebrok M, Tang Q, Desai T A. ACS Nano, 2017, 11:8.
[9] Desai T, Shea L D. Nat. Rev. Drug. Discov., 2017, 16:5.
[10] Lu J, Xia Q, Zhou Q. Sci. China Life. Sci., 2017, 60:3.
[11] Chae S Y, Lee M, Kim S W, Bae Y H. Biomaterials, 2004, 25:5.
[12] Downing R, Heald K, Hail C. Gut., 1990, 31:4.
[13] Soonshiong P, Heintz R E, Merideth N, Yao Q X, Yao Z W, Zheng T L, Murphy M, Moloney M K, Schmehl M, Harris M, Mendez R, Mendez R, Sandford P A. Lancet, 1994, 343:8903.
[14] Hoffman A S. Adv. Drug Del. Rev., 2012, 64.
[15] Kollmer M, Appel A A, Somo S I, Brey E M. Tissue Eng. Part B-Rev., 2016, 22:1.
[16] Rengifo H R, Giraldo J A, Labrada I, Stabler C L. Adv. Healthc. Mater., 2014, 3:7.
[17] Scharp D W, Marchetti P. Adv. Drug Del. Rev., 2014, 67/68:35.
[18] Burdick J A, Prestwich G D. Adv. Mater., 2011, 23:12.
[19] Velten F, Laue C, Schrezenmeir J. Biomaterials, 1999, 20:22.
[20] Harrington S, Williams J, Rawal S, Ramachandran K, Stehno-Bittel L. Tissue Eng. Part A, 2017, 23:19.
[21] Marchioli G, Zellner L, Oliveira C, Engelse M, de Koning E, Mano J, Karperien, van Apeldoorn A, Moroni L. J. Mater. Sci-Mater. M., 2017, 28:12.
[22] De Vos P, Lazarjani H A, Poncelet D, Faas M M. Adv. Drug Del. Rev., 2014, 67/68:15.
[23] Gill I, Ballesteros A. Trends Biotechnol., 2000, 18:7.
[24] Phelps E A, Templeman K L, Thule P M, Garcia A J. Drug. Deliv. Transl. Re., 2015, 5:2.
[25] 乔从德(Qiao C D). 高分子通报(Polymer Bulletin), 2010, 3.
[26] Schweicher J, Nyitray C, Desai T A. Front. Biosci., 2014, 19:1.
[27] Weber L M, He J, Bradley B, Haskins K, Anseth K S. Acta Biomater., 2006, 2:1.
[28] Lou S F, Zhang X Y, Zhang J M, Deng J, Kong D L, Li C. Mat. Sci. Eng. C-Mater., 2017, 78.
[29] Nyitray C E, Chang R, Faleo G, Lance K D, Bernards D A, Tang Q, Desai T A. ACS Nano, 2015, 9:6.
[30] Marchioli G, Luca A D, de Koning E, Engelse M, van Blitterswijk C A, Karperien M, van Apeldoorn A A, Moroni L. Adv. Healthc. Mater., 2016, 5:13.
[31] Wang F, Wang L, Li C, Abedalwafa M. Rev. Adv. Mater. Sci., 2013, 34:2.
[32] Mendelsohn A, Desai T. Adv. Exp. Med. Biol., 2010, 670:670.
[33] Trewyn B G, Slowing I I, Supratim G, Chen H T, Lin V S Y. Acc. Chem. Res., 2007, 40:9.
[34] Desai T A, Chu W H, Tu J K, Beattie G M, Hayek A, Ferrari M. Biotechnol. Bioeng., 1998, 57:1.
[35] Atchison N, Fan W, Brewer D D, Arunagirinathan M A, Hering B J, Kumar S, Papas K K, Kokkoli E, Tsapatsis M. Angew. Chem. Int. Ed., 2011, 50:7.
[36] Jaroch D B, Lu J, Madangopal R, Stull N D, Stensberg M, Shi J, Kahn J L, Herrera-Perez R, Zeitchek M, Sturgis J, Robinson J P, Yoder M C, Porterfield D M, Mirmira R G, Rickus J L. Am. J. Physiol-Endoc. M., 2013, 305:10.
[37] Zhang M, Desai T, Ferrari M. Biomaterials, 1998, 19:10.
[38] Zhao J, Wang X, Sun T, Li L. Nanotechnology, 2005, 16:10.
[39] Paulose M, Prakasam H E, Varghese O K, Peng L, Popat K C, Mor G K, Desai T A, Grimes C A. J. Phys. Chem. C, 2007, 111:41.
[40] Roy P, Berger S, Schmuki P. Angew. Chem. Int. Edit., 2011, 50:13.
[41] Paulose M, Peng L, Popat K C, Varghese O K, Latempa T J, Bao N, Desai T A, Grimes C A. J. Membr. Sci., 2008, 319:1.
[42] Vegas A J, Veiseh O, Doloff J C, Ma M, Tam H H, Bratlie K, Li J, Bader A R, Langan E, Olejnik K. Nat. Biotechnol., 2016, 34:3.
[43] Vegas A J, Veiseh O, Gürtler M, Millman J R, Pagliuca F W, Bader A R, Doloff J C, Jie L, Chen M, Olejnik K. Nat. Med., 2016, 22:306.
[44] Beck J, Angus R, Madsen B, Britt D, Vernon B, Nguyen K T. Tissue Eng., 2007, 13:3.
[45] Song K, Yang Y, Li S, Wu M, Wu Y, Lim M, Liu T. Mater. Sci. Eng. C., 2014, 40.
[46] Veriter S, Gianello P, Dufrane D. Curr. Diabetes. Rep., 2013, 13:5.
[47] Papas K K, Avgoustiniatos E S, Suszynski T M. Panminerva Med., 2016, 58:1.
[48] Pedraza E, Coronel M M, Fraker C A, Ricordi C, Stabler C L. Proc. Natl. Acad. Sci., 2012, 109:11.
[49] Pepper A R, Gala-Lopez B, Pawlick R, Merani S, Kin T, Shapiro A M J. Nat. Biotechnol., 2015, 33:5.
[50] Chatenoud L, Quaranta P, Antonini S, Spiga S, Mazzanti B, Curcio M, Mulas G, Diana M, Marzola P, Mosca F, Longoni B. PLoS One., 2014, 9:4.
[51] Ludwig B, Reichel A, Steffen A, Zimerman B, Schally A V, Block N L, Colton C K, Ludwig S, Kersting S, Bonifacio E, Solimena M, Gendler Z, Rotem A, Barkai U, Bornstein S R. Proc. Natl. Acad. Sci. U. S. A., 2013, 110:47.
[52] Mooranian A, Negrulj R, Takechi R, Jamieson E, Morahan G, Al-Salami H. Ther. Deliv., 2017, 8:10.
[53] Niknamasl A, Ostad S N, Soleimani M, Azami M, Salmani M K, Lotfibakhshaiesh N, Ebrahimi-Barough S, Karimi R, Roozafzoon R, Ai J. Cell Biol. Int., 2014, 38:10.
[54] Merani S, Toso C, Emamaullee J, Shapiro A M J. Br. J. Surg., 2008, 95:12.
[55] Berman D M, Molano R D, Fotino C, Ulissi U, Gimeno J, Mendez A J, Kenyon N M, Kenyon N S, Andrews D M, Ricordi C. Diabetes., 2016, 65:5.
[56] Sakata N, Aoki T, Yoshimatsu G, Tsuchiya H, Hata T, Katayose Y, Egawa S, Unno M. Diabetes MeTab. Res. Rev., 2014, 30:1.
[57] Daniel E, Olof E, Joey L, Per-Ola C. J. Transplant., 2011, 2011, 352043.
[58] Wolf-van Buerck L, Schuster M, Baehr A, Mayr T, Guethoff S, Abicht J, Reichart B, Nam-Apostolopoulos Y C, Klymiuk N, Wolf E, Seissler J. Xenotransplantation, 2015, 22:6.
[59] Veiseh O, Doloff J C, Ma M L, Vegas A J, Tam H H, Bader A R, Li J, Langan E, Wyckoff J, Loo W S, Jhunjhunwala S, Chiu A, Siebert S, Tang K, Hollister-Lock J, Aresta-Dasilva S, Bochenek M, Mendoza-Elias J, Wang Y, Qi M, Lavin D M, Chen M, Dholakia N, Thakrar R, Lacik I, Weir G C, Oberholzer J, Greiner D L, Langer R, Anderson D G. Nat. Mater., 2015, 14:6.
[60] Mendelsohn A D, Nyitray C, Sena M, Desai T A. Acta Biomater., 2012, 8:12.
[61] Mooranian A, Negrulj R, Al-Salami H. Drug Deliv. Transl. Re., 2016, 6:1.
[62] Graham J G, Zhang X, Goodman A, Pothoven K, Houlihan J, Wang S, Gower R M, Luo X, Shea L D. Tissue Eng. Part A., 2013, 19:11.
[1] Xiaoxue Gu, Jing Yu, Mingying Yang, Yajun Shuai. Silk Fibroin-Based 3D Printing Strategies for Biomedical Applications [J]. Progress in Chemistry, 2022, 34(6): 1359-1368.
[2] Rui Zhao, Xiao Yang, Xiangdong Zhu, Xingdong Zhang. Application of Trace Element Strontium-Doped Biomaterials in the Field of Bone Regeneration [J]. Progress in Chemistry, 2021, 33(4): 533-542.
[3] Xingang Zuo, Haolan Zhang, Tong Zhou, Changyou Gao. Biomaterials for Regulating Cell Migration and Tissue Regeneration [J]. Progress in Chemistry, 2019, 31(11): 1576-1590.
[4] Zhi Li, Houliang Tang, Anchao Feng, San H. Thang. Synthesis of Zwitterionic Polymers by Living/Controlled Radical Polymerization and Its Applications [J]. Progress in Chemistry, 2018, 30(8): 1097-1111.
[5] Jiang Min, Wang Min, Wei Shiyong, Chen Zhibao, Mu Shichun. Aligned Nanofibers Based on Electrospinning Technology [J]. Progress in Chemistry, 2016, 28(5): 711-726.
[6] Liu Zongguang, Qu Shuxin, Weng Jie. Application of Polydopamine in Surface Modification of Biomaterials [J]. Progress in Chemistry, 2015, 27(2/3): 212-219.
[7] Cheng Xinfeng, Jin Yong, Qi Rui, Fan Baozhu, Li Hanping. Stimuli-Responsive Degradable Polymeric Hydrogels [J]. Progress in Chemistry, 2015, 27(12): 1784-1798.
[8] Liu Xiaobo, Kou Zongkui, Mu Shichun. Porous Graphene Materials [J]. Progress in Chemistry, 2015, 27(11): 1566-1577.
[9] Zhang Yuqi, Yu Jicheng, Shen Qundong, Gu Zhen. Glucose-Responsive Synthetic Closed-Loop Insulin Delivery Systems [J]. Progress in Chemistry, 2015, 27(1): 11-26.
[10] Xu Lina, Ma Peipei, Chen Qiang, Lin Sicong, Shen Jian. Biological Application of Sulfobetaine Methacrylate Polymers [J]. Progress in Chemistry, 2014, 26(0203): 366-374.
[11] Zhou Jun, Bai Zhaoshuai, Xu Huibi, Huang Kaixun*. Selenoproteins and Diabetes——Dual Effect of Selenium [J]. Progress in Chemistry, 2013, 25(04): 488-494.
[12] Li Chunge, Zhao Shuang, Li junjie, Yin Yuji*. Polymeric Biomaterials Containing Thiol/Disulfide Bonds [J]. Progress in Chemistry, 2013, 25(01): 122-134.
[13] Ma Mengjia, Chen Yuyun, Yan Zhiqiang, Ding Jian, He Dannong*, Zhong Jian*. Applications of Atomic Force Microscopy in Nanobiomaterials Research [J]. Progress in Chemistry, 2013, 25(01): 135-144.
[14] Tang Shiyang, Sun Xiaojun, Lin Li, Sun Yan, Liu Xianbin. Monodisperse Mesoporous Silica Nanoparticles: Synthesis and Application in Biomaterials [J]. Progress in Chemistry, 2011, 23(9): 1973-1984.
[15] Wang Wei, Li Bo, Gao Changyou. Modulating the Differentiation of BMSCs by Surface Properties of Biomaterials [J]. Progress in Chemistry, 2011, 23(10): 2160-2168.