中文
Announcement
More
Progress in Chemistry 2018, Vol. 30 Issue (11): 1669-1680 DOI: 10.7536/PC180205 Previous Articles   Next Articles

• Review •

Multifunctional Liposomal Drug Delivery Technology

Jie Tang, Renfa Liu, Zhifei Dai*   

  1. Department of Biomedical Engineering, School of Engineering, Peking University, Beijing 100871, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Major Instrument Development Project(No.81727803) and the Nano Science and Technology Specific Project of National Key R & D Plan(No.2016YFA0201400).
PDF ( 882 ) Cited
Export

EndNote

Ris

BibTeX

Liposome is one of the most popular drug delivery system due to its structure similarity to cell, high biocompatibility, availability for loading various drugs(hydrophobic, hydrophilic or amphiphilic), etc. Since its first development in 1965, tremendous technical advances have been made in this field, resulting in tens of liposomal drugs applied in clinic. However, the liposomal technology is far from perfect. The defects of liposomal technology include low drug loading, insufficient tumor targeting, etc. This review focuses on some major advances in recent years in terms of drug loading, targeting delivery, controlled release, and imaging monitoring. Traditionally, the drug loading of liposome is conducted by a passive loading method, characterized with low drug loading capability, low encapsulating efficiency and high drug leaking. Although the development of pH gradient method makes some drug loaded at very high encapsulating efficiency, this method is only suitable for some ionizable drugs and the maximum drug loading capability is usually not higher than 10 wt%. The newly developed active loading procedure by ferrying hydrophobic drugs with ionizable cycolodextran makes active loading of hydrophobic drugs possible. The application of reverse-phase microemulsion enables some platinum-based drugs loaded in the liposome as a nanoprecipitate characterized with a remarkably high drug loading capability. Direct conjugating drugs onto the liposomal membrane is another promising method with high drug loading, high encapsulating efficiency and minimal drug leaking. Efficient target delivery of liposomes to tumors is critical in improving therapeutic efficacy, yet strategies involving ligand modification have been difficult to achieve in clinic. Many researches have shown that some physical methods including heat, laser, ultrasound and ionizing irradiation can not only significantly increase liposomal accumulation, but also control the drug release. This indicates that combining liposome-based therapy with some minimal-invasive physical therapy such as hyperthermia therapy, photodynamic therapy and radiation therapy would maximize the targeting ability of liposome and release the drug in a controlled manner. The unique lipid-encapsulated core-shell structure makes liposome a versatile platform for loading various drugs. The liposome can be used to co-encapsulate two or more drugs that target different pathways, thus making combination therapy possible. Compared to the single-drug therapy, the combination therapy offers several advantages including reduced dose, less drug resistance, low toxicity and improved efficacy. In addition to therapeutic agents, the liposome can also load some imaging agents, thus enabling liposome "visible". The development of "visible" liposome makes it possible to monitor in real time the behavior of liposomal drugs in vivo, which is impossible to do with conventional method. In conclusion, the liposome has witnessed many technical advances in recent years. However, to further optimize these advances and finally translate them into clinic to benefit patients, a lot more work still needs to do.
Contents
1 Introduction
2 The innovation of drug loading methods improves drug loading capability and encapsulation efficiency
3 Stimulates controlled targeted and drug released liposome
3.1 Temperature sensitive liposome
3.2 Photodynamic enhanced targeted and drug released liposome
3.3 Ultrasound controlled targeted and drug released liposome
3.4 Radio enhanced targeted and drug released liposome
4 Combination drug released liposome
5 Visualization liposome assessing therapy processes
6 Conclusion

CLC Number: 

[1] Zhang Y, Chan H F, Leong K W. Adv. Drug Del. Rev., 2013, 65:104.
[2] Bulbake U, Doppalapudi S, Kommineni N, Khan W. Pharmaceutics, 2017, 9:12.
[3] Pillai G. Nanomed. Nanotechnol. Biol. Med., 2014, 1(2):13.
[4] Park Y, Kitahara T, Takagi R, Kato R. World J. Clin. Oncol., 2011, 2:125.
[5] Yokomichi N, Nagasawa T, Coler-Reilly A, Suzuki H, Kubota Y, Yoshioka R, Tozawa A, Suzuki N, Yamaguchi Y. Hum. Cell, 2013, 26:8.
[6] Parak K. J. Control. Release., 2017, 252:125.
[7] B'hymer C. Pharm. Res., 2003, 20:337.
[8] Mayer L, Hope M, Cullis P, Janoff A. BBA-Biomembranes, 1985, 817:193.
[9] Akbarzadeh A, Rezaei-Sadabady R, Davaran S, Joo S W, Zarghami N, Hanifehpour Y, Samiei M, Kouhi M, Nejati-Koshki K. Nanoscale Res. Lett., 2013, 8:102.
[10] Wehbe M, Malhotra A, Anantha M, Roosendaal J, Leung A W, Plackett D, Edwards K, Gilabert-Oriol R, Bally M B. J. Control. Release., 2017, 252:50.
[11] Allen T M, Cullis P R. Advanced Drug Delivery Reviews, 2013, 65:36.
[12] Barenholz Y C. J. Control. Release., 2012, 160:117.
[13] Sur S, Fries A C, Kinzler K W, Zhou S, Vogelstein B. Proc. Natl. Acad. Sci.U.S.A., 2014, 111:2283.
[14] Park K. ACS Nano, 2013, 7:7442.
[15] Yuan F, Leunig M, Huang S K, Berk D A, Papahadjopoulos D, Jain R K. Cancer Res., 1994, 54:3352.
[16] Gao L, Liu G, Ma J, Wang X, Zhou L, Li X. J. Control. Release., 2012, 160:418.
[17] Guo S, Miao L, Wang Y, Huang L. J. Control. Release., 2014, 174:137.
[18] Guo S, Wang Y, Miao L, Xu Z, Lin C M, Zhang Y, Huang L. ACS Nano, 2013, 7:9896.
[19] Liu D, Poon C, Lu K, He C, Lin W. Nat. Commun., 2014, 5:4182.
[20] Liang X, Li X, Yue X, Dai Z. Angew. Chem. Int. Ed., 2011, 50:11622.
[21] Lovell J F, Jin C S, Huynh E, Jin H, Kim C, Rubinstein J L, Chan W C, Cao W, Wang L V, Zheng G. Nat. Mater., 2011, 10:324.
[22] MacDonald T D, Liu T W, Zheng G. Angew. Chem., 2014, 126:7076.
[23] Liu T W, MacDonald T D, Shi J, Wilson B C, Zheng G. Angew. Chem. Int. Ed. Engl., 2012, 51:13128.
[24] Liang X, Li X, Jing L, Yue X, Dai Z. Biomaterials, 2014, 35:6379.
[25] Liang X, Gao C, Cui L, Wang S, Wang J, Dai Z. Adv. Mater., 2017, 29:1703135.
[26] Batist G, Gelmon K A, Chi K N, Miller W H, Chia S K, Mayer L D, Swenson C E, Janoff A S, Louie A C. Clin. Cancer. Res., 2009, 15:692.
[27] Wilhelm S, Tavares A J, Dai Q, Ohta S, Audet J, Dvorak H F, Chan W C. Nat. Revi. Mater., 2016, 1:16014.
[28] Munster P N, Miller K, Krop I E, Dhindsa N, Reynolds J, Geretti E, Niyikiza C, Nielsen U, Hendriks B, Wickham T J. J. Clin. Oncol., 2012, 30:TPS663.
[29] Von Hoff D, Mita M M, Ramanathan R K, Weiss G J, Mita A C, LoRusso P M, Burris H A, Hart L L, Low S C, Parsons D M, Zale S E, Summa J M, Youssoufian H, Sachdev J C. Clin. Cancer. Res., 2016, 22(13):3157.
[30] Diederich C J. International Journal of Hyperthermia, 2005, 21:745.
[31] Chu K F, Dupuy D E. Nat. Rev. Cancer, 2014, 14:199.
[32] Chen Q, Krol A, Wright A, Needham D, Dewhirst M W, Yuan F. Int. J. Hyperthermia, 2008, 24:475.
[33] Lyon P C, Griffiths L F, Lee J, Chung D, Carlisle R, Wu F, Middleton M R, Gleeson F V, Coussios C C. J. Therap. Ultrasound., 2017, 5:28.
[34] Tak W, Lin S, Wang Y, Zheng J, Izzo F, Park S, Chen M, Wong S, Xu R, Peng C. Annual Conference of the International Liver Cancer Association, ILCA 2013. International Liver Cancer Association., 2014.
[35] Mills J K, Needham D. BBA-Biomembranes, 2005, 1716:77.
[36] Chen K J, Liang H F, Chen H L, Wang Y, Cheng P Y, Liu H L, Xia Y, Sung H W. ACS Nano, 2012, 7:438.
[37] Chen K J, Chaung E Y, Wey S P, Lin K J, Cheng F, Lin C C, Liu H L, Tseng H W, Liu C P, Wei M C. ACS Nano, 2014, 8:5105.
[38] Liang X, Gao J, Jiang L, Luo J, Jing L, Li X, Jin Y, Dai Z. ACS Nano, 2015, 9:1280.
[39] Dolmans D E, Fukumura D, Jain R K. Nat. Rev. Cancer., 2003, 3:380.
[40] Swartz M A, Iida N, Roberts E W, Sangaletti S, Wong M H, Yull F E, Coussens L M, DeClerck Y A. Cancer Res., 2012, canres. 0122.2012.
[41] Sheng D, Liu T, Deng L, Zhang L, Li X, Xu J, Hao L, Li P, Ran H, Chen H. Biomaterials, 2018, 165:1.
[42] Feng L, Cheng L, Dong Z, Tao D, Barnhart T E, Cai W, Chen M, Liu Z. ACS Nano, 2016, 11:927.
[43] Denny W A. Future Oncol., 2010, 6:419.
[44] Ganjoo K N, Cranmer L D, Butrynski J E, Rushing D, Adkins D, Okuno S H, Lorente G, Kroll S, Langmuir V K, Chawla S P. Oncology, 2011, 80:50.
[45] Borad M J, Reddy S G, Bahary N, Uronis H E, Sigal D, Cohn A L, Schelman W R, Stephenson Jr J, Chiorean E G, Rosen P J. J. Clin. Oncol., 2015, 33:1475.
[46] Foster T H, Gao L. Radiat. Res., 1992, 130:379.
[47] Liu Y, Liu Y, Bu W, Cheng C, Zuo C, Xiao Q, Sun Y, Ni D, Zhang C, Liu J. Angew. Chem., 2015, 127:8223.
[48] Zhen Z, Tang W, Chuang Y J, Todd T, Zhang W, Lin X, Niu G, Liu G, Wang L, Pan Z, Chen X Y, Xie J. ACS Nano, 2014, 8:6004.
[49] Randles E G, Bergethon P R. Langmuir, 2013, 29:1490.
[50] Pashkovskaya A, Kotova E, Zorlu Y, Dumoulin F, Ahsen V, Agapov I, Antonenko Y. Langmuir, 2009, 26:5726.
[51] Rwei AY, Lee J J, Zhan C, Liu Q, Ok M T, Shankarappa S A, Langer R, Kohane D S. Proc. Natl. Acad. Sci.U.S.A., 2015, 112:15719.
[52] Rwei A Y, Zhan C, Wang B, Kohane D S. J. Control. Release., 2017, 251:68.
[53] Helfield B, Chen X, Watkins S C, Villanueva F S. Proc. Natl. Acad. Sci.U.S.A., 2016, 113:9983.
[54] Chertok B, Langer R, Anderson D G. ACS Nano, 2016, 10:7267.
[55] Huynh E, Leung B Y, Helfield B L, Shakiba M, Gandier J A, Jin C S, Master E R, Wilson B C, Goertz D E, Zheng G. Nat. Nanotechnol., 2015, 10:325.
[56] Xu Y, Liang X, Bhattarai P, Sun Y, Zhou Y, Wang S, Chen W, Ge H, Wang J, Cui L. Adv. Funct. Mater., 2017, 27:1704096.
[57] Lanza G M. Nat. Biotechnol., 2015, 10:301.
[58] Rosenthal I, Sostaric J Z, Riesz P. Ultrason Sonochem, 2004, 11:349.
[59] Rwei A Y, Paris J L, Wang B, Wang W, Axon C D, Vallet-Regí M, Langer R, Kohane D S. Nat. Biomed. Eng., 2017, 1:644.
[60] Delaney G, Jacob S, Featherstone C, Barton M. Cancer:Interdisciplinary International Journal of the American Cancer Society, 2005, 104:1129.
[61] Stapleton S, Jaffray D, Milosevic M. Advanced Drug Delivery Reviews, 2017, 109:119.
[62] Werner M E, Cummings N D, Sethi M, Wang E C, Sukumar R, Moore D T, Wang A Z. Int. J. Radiat. Oncol., 2013, 86:463.
[63] Miller M A, Chandra R, Cuccarese M F, Pfirschke C, Engblom C, Stapleton S, Adhikary U, Kohler R H, Mohan J F, Pittet M J, Weissleder R. Sci. Transl. Med., 2017, 9:eaal0225.
[64] Persidis A. Nat. Biotechnol., 1999, 17:94.
[65] Parhi P, Mohanty C, Sahoo S K. Drug Discov. Today, 2012, 17:1044.
[66] Lavi O, Gottesman M M, Levy D. Drug. Resist. Updat., 2012, 15:90.
[67] Thomas H, Coley H M. Cancer Control, 2003, 10:159.
[68] Rezzani R. Prog. Histochem. Cyto., 2004, 39:85.
[69] Phillips M F, Quinlivan R. Cochrane DB Syst. Rev., 2008, CD004571.
[70] Choi C H. Cancer Cell Int., 2005, 5:30.
[71] Chang X, Heene E, Qiao F, Nick P. PLoS One, 2011, 6:e26405.
[72] Sexton É, van Themsche C, Leblanc K, Parent S, Lemoine P, Asselin E. Mol. Cancer, 2006, 5:45.
[73] Meng J, Guo F, Xu H, Liang W, Wang C, Yang X D. Sci. Rep., 2016, 6:22390.
[74] Spring B Q, Sears R B, Zheng L Z, Mai Z, Watanabe R, Sherwood M E, Schoenfeld D A, Pogue B W, Pereira S P, Villa E, Hasan T. Nat. Nanotechnol., 2016, 11:378.
[75] Li S, Zhang Y, Wang J, Zhao Y, Ji T, Zhao X, Ding Y, Zhao X, Zhao R, Li F, Yang X, Liu S, Liu Z, Lai J, Whittaker A K, Anderson G J, Wei J, Nie G. Nature Biomedical Engineering, 2017, 1:667.
[76] Jing L, Shi J, Fan D, Li Y, Liu R, Dai Z, Wang F, Tian J. ACS Appl. Mater. Inter., 2015, 7:22095.
[77] Lamichhane N, Dewkar G K, Sundaresan G, Mahon R N, Zweit J. Int. J. Mol. Sci., 2017, 18:1079.
[78] De Smet M, Heijman E, Langereis S, Hijnen N M, Grüll H. J. Control. Release., 2011, 150:102.
[79] Endo-Takahashi Y, Negishi Y, Nakamura A, Suzuki D, Ukai S, Sugimoto K, Moriyasu F, Takagi N, Suzuki R, Maruyama K. Biomaterials, 2013, 34:2807.
[80] Mazza M, Lozano N, Vieira D B, Buggio M, Kielty C, Kostarelos K. Adv. Healc. Mater., 2017, 6:1700374.
[81] Chen Q, Liang C, Sun X, Chen J, Yang Z, Zhao H, Feng L, Liu Z. Proc. Natl. Acad. Sci.U.S.A., 2017, 201701976.
[82] Hendriks B, Reynolds J, Klinz S, Geretti E, Lee H, Leonard S, Gaddy D, Espelin C, Nielsen U, Wickham T. Pharm. Syst. Pharm, 2012, 1:1.
[83] Lee H, Zheng J, Gaddy D, Orcutt K D, Leonard S, Geretti E, Hesterman J, Harwell C, Hoppin J, Jaffray D A. Nanomed. Nanotechnol. Biol. Med., 2015, 11:155.
[84] Lee H, Shields A F, Siegel B A, Miller K D, Krop I, Ma C X, LoRusso P M, Munster P N, Campbell K, Gaddy D F, Leonard S C, Geretti E, Blocker S J, Kirpotin D B, Moyo V, Wickham T J, Hendriks B S. Clin. Cancer Res., 2017, 23(15):4190.
[85] Lee H, Gaddy D, Ventura M, Bernards N, de Souza R, Kirpotin D, Wickham T, Fitzgerald J, Zheng J, Hendriks B S. Theranostics, 2018, 8:2300.
[86] Hijnen N, Kneepkens E, de Smet M, Langereis S, Heijman E, Grüll H. Proc. Natl. Acad. Sci., 2017, 201700790.
[87] Al-Jamal W T, Al-Jamal K T, Bomans P H, Frederik P M, Kostarelos K. Small, 2008, 4:1406.
[88] Luo D, Goel S, Liu H J, Carter K A, Jiang D, Geng J, Kutyreff C J, Engle J W, Huang W C, Shao S. ACS Nano, 2017, 11:12482.
[89] Weissleder R. Science, 2006, 312:1168.
[90] Shafirstein G, Bellnier D, Oakley E, Hamilton S, Potasek M, Beeson K, Parilov E. Cancers (Basel), 2017, 9:12.
[91] Hashimoto M, Tong R, Kohane D S. Mol. Pharm., 2013, 10:2127.
[92] Shin C S, Kwak B, Han B, Park K. Mol. Pharm., 2013, 10:2167.
[1] Qin Zhong, Shuai Zhou, Xiangmei Wang, Wei Zhong, Chendi Ding, Jiajun Fu. Construction of Mesoporous Silica Based Smart Delivery System and its Therapeutic Application in Various Diseases [J]. Progress in Chemistry, 2022, 34(3): 696-716.
[2] Yunxue Xu, Renfu Liu, Kun xu, Zhifei Dai. Fluorescent Probes for Intraoperative Navigation [J]. Progress in Chemistry, 2021, 33(1): 52-65.
[3] Tianxi He, Wenbin Wang, Jiu Wang, Boshui Chen, Qionglin Liang. Mesoporous Carbon Spheres: Synthesis and Applications in Drug Delivery System [J]. Progress in Chemistry, 2020, 32(2/3): 309-319.
[4] Sheng Feng, Fang Yang, Mengyao Liu, Hongxian Fan, Nian Xu. Carriers of Docetaxel: An Anticancer Drug [J]. Progress in Chemistry, 2019, 31(2/3): 368-380.
[5] Hong Li, Yuanyuan Zhao, Haonan Peng. Dopamine Based Nanomaterials for Biomedical Applications [J]. Progress in Chemistry, 2018, 30(8): 1228-1241.
[6] Tianxi He, Qionglin Liang, Jiu Wang, Guoan Luo. Microfluidic Fabrication of Liposomes as Drug Carriers [J]. Progress in Chemistry, 2018, 30(11): 1734-1748.
[7] Liang He, Caiping Tan, Qian Cao, Zongwan Mao. Application of Phosphorescent Cyclometalated Iridium(Ⅲ) Complexes in Cancer Treatment [J]. Progress in Chemistry, 2018, 30(10): 1548-1556.
[8] Juan Shen, Yang Zhu, Hongdong Shi, Yangzhong Liu. Multifunctional Nanodrug Delivery Systems for Platinum-Based Anticancer Drugs [J]. Progress in Chemistry, 2018, 30(10): 1557-1572.
[9] Panpan Chen, Bingbing Shi*. Supramolecular Drug Delivery Systems Based on Macrocyclic Hosts [J]. Progress in Chemistry, 2017, 29(7): 720-739.
[10] Liu Jingjing, Chu Huijuan, Wei Hongliang, Zhu Hongzheng, Zhu Jing, He Juan. Progress in Graphene-Based Hydrogels [J]. Progress in Chemistry, 2015, 27(11): 1591-1603.
[11] Su Dan, Di Feng, Xing Ji, Che Jianfei, Xiao Yinghong. Application of Conducting Polymers in Controlled Drug Delivery System [J]. Progress in Chemistry, 2014, 26(12): 1962-1976.
[12] Liu Baoquan, Liu Qiang, Zhang Ji, Fan Shengdi, Yu Xiaoqi. Transfection of Nucleic Acids Mediated by Macrocyclic Polyamine-Based Liposomes [J]. Progress in Chemistry, 2013, 25(08): 1237-1245.
[13] Qi Hui, Zhu Yanhong*, Xu Huibi, Yang Xiangliang. Magnetic Iron Oxide Nanoparticle-Based Theranostic Nanomedicine [J]. Progress in Chemistry, 2013, 25(04): 611-619.
[14] Jin Yushen, Ke Hengte, Dai Zhifei* . Multifunctional Ultrasound Contrast Agent [J]. Progress in Chemistry, 2012, 24(12): 2424-2430.
[15] Jing Jing, Li Yi, Liu Jian, Zhan Sihui. Liposome Formation with Electroformation Method [J]. Progress in Chemistry, 2011, 23(12): 2598-2606.