中文
Announcement
More
Progress in Chemistry 2018, Vol. 30 Issue (9): 1424-1433 DOI: 10.7536/PC180139 Previous Articles   Next Articles

• Review •

Synthesis of High-Density Jet Fuels from Biomass

Jiawei Xie, Xiangwen Zhang, Junjian Xie, Genkuo Nie, Lun Pan, Jijun Zou*   

  1. Key Laboratory for Advanced Fuel and Chemical Propellant of Ministry of Education, Collaborative Innovative Center of Chemical Science and Engineering(Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No.U1462119) and the Weaponry and Equipment Pre-Research Joint Foundation of Ministry of Education(No.6141A0202020507).
PDF ( 804 ) Cited
Export

EndNote

Ris

BibTeX

High-density jet fuels are advanced fuel synthesized to improve the performance of aerospace vehicles. As response to the sustainable development, the development of high-density biofuels becomes extremly necessary, which can also extend the sources of fuels. Herein, the progress in synthesis of high-density jet fuels using biomass-derived feedstock has been reviewed. Biofuels with different structure, such as paraffins, branched monocycloalkanes, and polycycloalkanes, and the feedstock including pinenes and lignocellulose-derived platform molecules such as cyclic ketones/alcohols, furanic aldehydes/alcohols, aromatic oxygenates, etc. are covered. The propulsion performance of the engine is deeply dependent on the properties of the applied fuel, for which the most important features are density and low-temperature properties. Specially, the properties of typical biofuels are summarized to discuss the effect of molecular structure. Increasing the number of the ring in fuel molecular improves the fuel density, with undesirable variation in low-temperature properties. Fortunately, introducing the branched chain will improve the low-temperature properties. And several reactions such as alkylation, condensation, cyclic addition, and hydrodeoxygenation are discussed from the aspects of catalyst and reaction condition. An outlook on further development of high-density biofuels is also given. This review will be helpful to explore and develop better approach and process for high-density biofuel synthesis and upgrade for advanced aerospace vehicles.
Contents
1 Introduction
2 Synthesis of paraffin biofuels
3 Synthesis of branched monocycloalkane biofuels
4 Synthesis of polycycloalkane biofuels
4.1 Terpene-derived biofuels
4.2 Lignocellulose-derived polycycloalkane biofuels
4.3 Lignocellulose-derived fused-ring biofuels
5 Conclusion

CLC Number: 

[1] Zhang X W, Pan L, Wang L, Zou J J. Chem. Eng. Sci., 2017, doi:https://doi.org/10.1016/j.ces.2017.11.044.
[2] 潘伦(Pan L), 邓强(Deng Q), 鄂秀天凤(E X T F), 聂根阔(Nie G K), 张香文(Zhang X W), 邹吉军(Zou J J). 化学进展(Progress in Chemistry), 2015, 27(11):1531.
[3] Chung H S, Chen C S H, Kremer R A, Boulton J R. Energy Fuels, 1999, 13:641.
[4] Zou J J, Xu Y, Zhang X W, Wang L. Appl. Catal. A, 2012, 421/422:79.
[5] Wang L, Zou J J, Zhang X W, Wang L. Fuel, 2012, 91:164.
[6] Wang L, Zou J J, Zhang X W, Wang L. Energy Fuels, 2011, 25:1342.
[7] Wang L, Zhang X W, Zou J J, Han H, Li Y H, Wang L. Energy Fuels, 2009, 23:2383.
[8] Zou J J, Liu Y, Pan L, Wang L, Zhang X W. Appl. Catal. B, 2010, 95:439.
[9] Zou J J, Xiong Z Q, Wang L, Zhang X W, Mi Z T. J. Mol. Catal. A, 2007, 271:209.
[10] Zou J J, Zhang X W, Kong J, Wang L. Fuel, 2008, 87:3655.
[11] Corma A, Iborra S, Velty A. Chem. Rev., 2007, 107:2411.
[12] Alonso D M, Bond J Q, Dumesic J A. Green Chem., 2010, 12:1493.
[13] Rinaldi R, Schüth F. ChemSusChem, 2009, 2:1096.
[14] Motagamwala A H, Won W Y, Maravelias C T, Dumesic J A. Green Chem., 2016, 18:5756.
[15] Hronec M, Fulajtarová K. Catal. Commun., 2012, 24:100.
[16] Xiong K, Lee W S, Bhan A, Chen J G G. ChemSusChem, 2014, 7:2146.
[17] Ulonska K, Voll A, Marquardt W. Energy Fuels, 2016, 30:445.
[18] Luo H Z, Ge L B, Zhang J S, Ding J, Chen R, Shi Z P. Bioresource Technol., 2016, 200:111.
[19] Isikgor F H, Becer C R. Polym. Chem., 2015, 6:4497.
[20] Harvey B G, Quintana R L. Energy Environ. Sci., 2010, 3:352.
[21] Bond J Q, Alonso D M, Wang D, West R M, Dumesic J A. Science, 2010, 327:1110.
[22] Xing R, Subrahmanyam A V, Olcay H, Qi W, van Walsum G P, Pendse H, Huber G W. Green Chem., 2010, 12:1933.
[23] Olcay H, Subrahmanyam A V, Xing R, Lajoie J, Dumesic J A, Huber G W. Energy Environ. Sci., 2013, 6:205.
[24] Yang J F, Li N, Li G Y, Wang W T, Wang A Q, Wang X D, Cong Y, Zhang T. ChemSusChem, 2013, 6:1149.
[25] Pholjaroen B, Li N, Yang J F, Li G Y, Wang W T, Wang A Q, Cong Y, Wang X D, Zhang T. Ind. Eng. Chem. Res., 2014, 53:13618.
[26] Li S S, Li N, Li G Y, Li L, Wang A Q, Cong Y, Wang X D, Zhang T. Green Chem., 2015, 17:3644.
[27] Yang J F, Li N, Li S S, Wang W T, Li L, Wang A Q, Wang X D, Cong Y, Zhang T. Green Chem., 2014, 16:4879.
[28] Corma A, de la Torre O, Renz M, Villandier N. Angew. Chem. Int. Ed., 2011, 50:2375.
[29] Corma A, de la Torre O, Renz M. Energy Environ. Sci., 2012, 5:6328.
[30] Chen F, Li N, Li S S, Li G Y, Wang A Q, Cong Y, Wang X D, Zhang T. Green Chem., 2016, 18:5751.
[31] Frey A M, Bitter J H, de Jong K P. ChemCatChem, 2011, 3:1193.
[32] Deng Q, Han P J, Xu J S, Zou J J, Wang L, Zhang X W. Chem. Eng. Sci., 2015, 138:239.
[33] Zhang X W, Deng Q, Han P J, Xu J S, Pan L, Wang L, Zou J J. AIChE J., 2017, 63:680.
[34] Arias K S, Climent M J, Corma A, Iborra S. Energy Environ. Sci., 2015, 8:317.
[35] Han P J, Nie G K, Xie J J, E X T F, Pan L, Zhang X W, Zou J J. Fuel Process. Technol., 2017, 163:45.
[36] Deng Q, Xu J S, Han P J, Pan L, Wang L, Zhang X W, Zou J J. Fuel Process. Technol., 2016, 148:361.
[37] Yang J F, Li S S, Li N, Wang W T, Wang A Q, Zhang T, Cong Y, Wang X D, Huber G W. Ind. Eng. Chem. Res., 2015, 54:11825.
[38] Li S S, Chen F, Li N, Wang W T, Sheng X R, Wang A Q, Cong Y, Wang X D, Zhang T. ChemSusChem, 2017, 10:711.
[39] Li S S, Li N, Wang W T, Li L, Wang A Q, Wang X D, Zhang T. Sci. Rep., 2016, 6:32379.
[40] Meylemans H A, Quintana R L, Harvey B G. Fuel, 2012, 97:560.
[41] Harvey B G, Meylemans H A, Gough R V, Quintana R L, Garrison M D, Bruno T J. Phys. Chem. Chem. Phys., 2014, 16:9448.
[42] Harvey B G, Wright M E, Quintana R L. Energy Fuels, 2010, 24:267.
[43] Meylemans H A, Baldwin L C, Harvey B G. Energy Fuels, 2013, 27:883.
[44] Zou J J, Chang N, Zhang X W, Wang L. ChemCatChem, 2012, 4:1289.
[45] Nie G K, Zou J J, Feng R, Zhang X W, Wang L. Catal. Today, 2014, 234:271.
[46] Meylemans H A, Quintana R L, Goldsmith B R, Harvey B G. ChemSusChem, 2011, 4:465.
[47] Goheen G E. J. Am. Chem. Soc., 1941, 63:744.
[48] Yang J F, Li N, Li G Y, Wang W T, Wang A Q, Wang X D, Cong Y, Zhang T. Chem. Commun., 2014, 50:2572.
[49] Jiang X D, He G J, Wu X, Guo Y S, Fang W J, Xu L. J. Chem. Eng. Data, 2014, 59:2499.
[50] Deng Q, Nie G K, Pan L, Zou J J, Zhang X W, Wang L. Green Chem., 2015, 17:4473.
[51] Wang W, Liu Y T, Li N, Li G Y, Wang W T, Wang A Q, Wang X D, Zhang T. Sci. Rep., 2017, 7:6111.
[52] Wang W, Li N, Li G Y, Li S S, Wang W T, Wang A Q, Cong Y, Wang X D, Zhang T. ACS Sustainable Chem. Eng., 2017, 5:1812.
[53] Sheng X R, Li G Y, Wang W T, Cong Y, Wang X D, Huber G W, Li N, Wang A Q, Zhang T. AIChE J., 2016, 62:2754.
[54] Sheng X R, Li N, Li G Y, Wang W T, Yang J F, Cong Y, Wang A Q, Wang X D, Zhang T. Sci. Rep., 2015, 5:9565.
[55] Xie J J, Zhang X W, Pan L, Nie G K, E X T F, Liu Q, Wang P, Li Y F, Zou J J. Chem. Commun., 2017, 53:10303.
[56] Chen F, Li N, Yang X F, Li L, Li G Y, Li S S, Wang W T, Hu Y C, Wang A Q, Cong Y, Wang X D, Zhang T. ACS Sustainable Chem. Eng., 2016, 4:6160.
[57] Roan M A, Boehman A L. Energy Fuels, 2004, 18:835.
[58] Nie G K, Zhang X W, Pan L, Wang M, Zou J J. Chem. Eng. Sci., 2017, 180:64.
[59] Nie G K, Zhang X W, Han P J, Xie J J, Pan L, Wang L, Zou J J. Chem. Eng. Sci., 2017, 158:64.
[60] Nie G K, Zhang X W, Pan L, Han P J, Xie J J, Li Z, Xie J W, Zou J J. Chem. Eng. Sci., 2017, 173:91.
[61] Ma T T, Feng R, Zou J J, Zhang X W, Wang L. Ind. Eng. Chem. Res., 2013, 52:2486.
[62] Kim S G, Han J, Jeon J K, Yim J H. Fuel, 2014, 137:109.
[1] Yuan Zhengqiu, Long Jinxing, Zhang Xinghua, Xia Ying, Wang Tiejun, Ma Longlong. Catalytic Conversion of Lignocellulose into Energy Platform Chemicals [J]. Progress in Chemistry, 2016, 28(1): 103-110.
[2] Pan Lun, Deng Qiang, E Xiutianfeng, Nie Genkuo, Zhang Xiangwen, Zou Jijun. Synthesis Chemistry of High-Density Fuels for Aviation and Aerospace Propulsion [J]. Progress in Chemistry, 2015, 27(11): 1531-1541.
[3] Zhang Jiaren, Deng Tianyin, Liu Haichao*. Catalytic Production of Liquid Biofuels from Triglyceride Feedstocks and Lignocellulose [J]. Progress in Chemistry, 2013, 25(0203): 192-208.
[4] . Chemocatalytic Transformation of Sugars to Transportation Fuels [J]. Progress in Chemistry, 2010, 22(09): 1844-1851.
[5] Kuang Tingyun1,2*,Bai Kezhi1,Yang Xiushan2. Suggestions on the Development Strategy of Bioenergy in China [J]. Progress in Chemistry, 2007, 19(0708): 1060-1063.
[6] Qiang Liu1,2,Xinhua Xu2*,Guanglei Ren2,Wei Wang1. Enzymatic Biofuel Cells [J]. Progress in Chemistry, 2006, 18(11): 1530-1537.