中文
Announcement
More
Progress in Chemistry 2018, Vol. 30 Issue (9): 1330-1340 DOI: 10.7536/PC180127 Previous Articles   Next Articles

• Review •

Ionic Polymerizations in Continuous Flow

Wanru Zhao1, Xin Hu2*, Ning Zhu1*, Zheng Fang1, Kai Guo1*   

  1. 1. College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211800, China;
    2. College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211800, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21878145, 21522604, 21604037, 21776130) and the Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture(No.XTD1823, XTB1802).
PDF ( 1291 ) Cited
Export

EndNote

Ris

BibTeX

Continuous flow polymerizations in the microreactors have attracted great research interest from both academia and industry. Remarkable advantages have been achieved by using microflow technology due to its superior mixing and heat transfer performance. This review focused on the recent progress in highly exothermic ionic polymerizations in microreactors. Compared with the traditional batch reactors, continuous flow anionic/cationic polymerizations show tremendous benefits, including but not limited to improvement of reaction conditions, good control of the molecular weight and the molecular weight distribution, and highly efficient construction of block structures. Moreover, the applications of continuous flow ionic polymerizations in the industry are discussed and prospected.
Contents
1 Introduction
2 Cationic polymerization in continuous flow
2.1 Controlled/living cationic polymerization of vinyl ethers in continuous flow
2.2 Controlled/living cationic polymerization of diisopropenylbenzenes in continuous flow
2.3 Controlled/living cationic polymerization of isobutylene in continuous flow
3 Anionic polymerization in continuous flow
3.1 Controlled/living anionic polymerization of styrenes in continuous flow
3.2 Controlled/living anionic polymerization of alkyl methacrylates in continuous flow
3.3 Controlled/living anionic block copolymerization of styrenes and alkyl methacrylates in continuous flow
4 Conclusion and outlook

CLC Number: 

[1] Plutschack M B, Pieber B, Gilmore K, Seeberger P H. Chem. Rev., 2017, 117:11796.
[2] Reizman B J, Jensen K F. Acc. Chem. Res., 2016, 49:1786.
[3] Elvira K, Solvas X, Woothon R, deMello A. Nat. Chem., 2013, 5:905.
[4] Poh J, Browne D L, Ley S V. React. Chem. Eng., 2016, 1:101.
[5] 骆广生(Luo G S),王凯(Wang K),王佩坚(Wang P J),吕阳成(Lu Y C),化工学报(CIESC Journal),2014,65:2563.
[6] 申刚义(Shen G Y), 于婉婷(Yu W T), 刘美蓉(Liu M R), 崔勋(Cui X). 化学进展(Progress in Chemistry), 2013, 25:1199.
[7] Chen Y Z, Zhao Y C, Han M, Ye C B, Dang M H, Chen G W. Green Chem., 2013, 15:91.
[8] Wen Z Z, Yu X H, Tu S T, Yan J Y, Dahlquist E. Bioresource Technol., 2009, 100:3054.
[9] 何涛(He T), 马小波(Ma X B), 徐志宏(Xu Z H), 王周玉(Wang Z Y). 化学进展(Progress in Chemistry), 2016, 28:829.
[10] 马磊(Ma L), 陈彬(Chen B), 吴骊珠(Wu L Z), 彭明丽(Peng M L), 张丽萍(Zhang L P), 佟振合(Tong Z H). 化学进展(Progress in Chemistry), 2004, 16:387.
[11] He W, Fang Z, Tian Q T, Shen W D, Guo K. Ind. Eng. Chem. Res., 2016, 55:1373.
[12] He W, Fang Z, Zhang K, Tu T, Lv N N, Qiu C H, Guo K. Chem. Eng. J., 2018, 331:161.
[13] Hua J W, Guo S Y, Yang Z, Fang Z, Guo K. Org. Process. Res. Dev., 2017, 21:1633.
[14] Wan L, Zhu W T, Qiao K, Sun X N, Fang Z, Guo K. Asian Journal of Organic Chemistry, 2016, 5:920.
[15] Ji D, Fang Z, He W, Zhang K, Luo Z Y, Wang T W, Guo K. ACS Sustainable Chemistry & Engineering, 2015, 3:1197.
[16] Fang Z, He W, Tu T, Lv N N, Qiu C H, Li X, Zhu N, Wan L, Guo K. Chem. Eng. J., 2018, 331:443.
[17] Zhu N, Huang W J, Hu X, Liu Y H, Fang Z, Guo K. Chem. Eng. J., 2018, 333:43.
[18] Szwarc M. Nature, 1956, 178:1168.
[19] Geacintov C, Smid J, Szwarc M. J. Am. Chem. Soc.,1962, 84:2508.
[20] Iwasaki T, Yoshida J I. Macromolecules, 2005, 38:1159.
[21] Li Z, Chen W J, Zhang L F, Cheng Z P, Zhu X L. Polym. Chem., 2015, 6:5030.
[22] Peng J Y, Tian C, Zhang L F, Cheng Z P, Zhu X L. Polym. Chem., 2017, 8:1495.
[23] Hu X, Zhu N, Fang Z, Li Z J, Guo K. Eur. Polym. J., 2016, 80:177.
[24] Zhu N, Hu X, Zhang Y J, Zhang K, Li Z, Guo K. Polym. Chem., 2016, 7:474.
[25] Hu X, Zhu N, Fang Z, Guo K. Reaction Chemistry & Engineering, 2017, 2:20.
[26] Zhu N, Huang W J, Hu X, Liu Y H, Fang Z, Guo K. Macromol. Rapid Commun., 2018, DOI:10.1002/marc.201700807.
[27] Zhu N, Liu Y H, Feng W Y, Huang W J, Zhang Z L, Hu X, Fang Z, Li Z J, Guo K. Eur. Polym. J., 2016, 80:234.
[28] Zhu N, Feng W Y, Hu X, Zhang Z L, Fang Z, Zhang K, Li Z J, Guo K. Polymer, 2016, 84:391.
[29] Kanaoka S, Sawamoto M, Higashimura T. Macromolecules, 1991, 24:2309.
[30] Lu J, Liang H, Zhang R F. Chem. J. Chin. Univ., 2000, 21:1932.
[31] Wu Y X, Xu X, Wu G Y, Lu J. Des. Monomers. Polym., 2003, 6:23.
[32] Olah G A. Angew. Chem. Int. Ed., 1995, 34:1393.
[33] Olah G A. J. Org. Chem., 2001, 66:5943.
[34] Miyamoto M, Sawamoto M, Higashimura T. Macromolecules, 1984, 17:265.
[35] Aoshima S, Higashimura T. Macromolecules, 1989, 22:1009.
[36] Kishimoto Y, Aoshima S, Higashimura T. Macromolecules, 1989, 22:3877.
[37] Puskas J E, Kaszas G. Prog. Polym. Sci., 2000, 25:403.
[38] Inagaki N, Ando T, Sawamoto M. Polym. Repr. Jpn., 2004, 53:2416.
[39] Yoshida J I, Suga S, Suzuki S, Kinomura N, Yamamoto A, Fujiwara K. J. Am. Chem. Soc., 1999, 121:9546.
[40] Yoshida J I, Suga S. Chem.-Eur. J., 2002, 8:2651.
[41] Suga S, Nagaki A, Yoshida J I. Chem. Commun., 2003, 354.
[42] Nagaki A, Kawamura K, Suga S, Ando T, Sawamoto M, Yoshida J I. J. Am. Chem. Soc., 2004, 126:14702.
[43] Suga S, Nishida T, Yamada D, Nagaki A, Yoshida J I. J. Am. Chem. Soc., 2004, 126:14338.
[44] Saito K, Ueoka K, Matsumoto K, Suga S, Nokami T, Yoshida J I. Angew. Chem. Int. Ed., 2011, 50:5153.
[45] Okajima M, Suga S, Itami K, Yoshida J I. J. Am. Chem. Soc., 2005, 127:6930.
[46] Okajima M, Soga K, Nokami T, Suga S, Yoshida J I. Org. Lett., 2006, 8:5005.
[47] Okajima M, Soga K, Watanabe T, Terao K, Nokami T, Suga S, Yoshida J I. B. Chem. Soc. Jpn., 2009, 82:594.
[48] Nokami T, Ohata K, Inoue M, Tsuyama H, Shibuya A, Soga K, Okajima M, Suga S, Yoshida J I. J. Am. Chem. Soc., 2008, 130:10864.
[49] Nokami T, Watanabe T, Musya N, Suehiro T, Morofuji T, Yoshida J I. Tetrahedron, 2011, 67:4664.
[50] Nagaki A, Takumi M, Tani Y, Yoshida J I. Tetrahedron, 2015, 71:5973.
[51] Wurm F, Frey H. Prog. Polym. Sci., 2011, 36:1.
[52] Tani Y, Takumi M, Moronaga S, Nagaki A, Yoshida J I. Eur. Polym. J., 2016, 80:227.
[53] Cho C G, Feit B A, Webster O W. Macromolecules, 1990, 23:1918.
[54] Iwasaki T, Nagaki A, Yoshida J I. Chem. Commun., 2007:1263.
[55] Nagaki A, Iwasaki T, Kawamura K, Yamada D, Suga S, Ando T, Sawamoto M, Yoshida J I. Chem. Asian J., 2008, 3:1558.
[56] Dittmer T, Gruber F, Nuyken O. Makromol. Chem., 1989, 190:1755.
[57] Iwasaki T, Yoshida J I. Macromol. Rapid Commun., 2007, 28:1219.
[58] Rach S F, Kühn F E. Sustainability, 2009, 1:35.
[59] Schulz R C. Angew. Chem. Int. Ed., 1983, 22:505.
[60] 梁立虎(Liang L H), 吴一弦(Wu Y X), 李艳(Li Y), 徐日炜(Xu R W), 杨万泰(Yang W T), 武冠英(Wu G Y). 高分子学报(Acta Polym. Sin.), 2008, 12:1166.
[61] Zhang L B, Wu Y X, Zhou P, Wu G Y, Yang W T, Yu D S. Chin. J. Polym. Sci., 2011, 29:360.
[62] Mach H R P. Lubr. Sci., 1999, 11:175.
[63] Harrison J J, Mijares C M, Cheng M T, Hudson J. Macromolecules, 2002, 35:2494.
[64] Zhu S, Lu Y C, Wang K, Luo G S. RSC Adv., 2016, 6:9827.
[65] Zhu S, Lu Y C, Wang K, Luo G S. Eur. Polym. J., 2016, 80:219.
[66] Zhu S, Lu Y C, Wang K, Luo G S. RSC Adv., 2016, 6:97983.
[67] Lu Y C, Zhu S, Wang K, Luo G S. Ind. Eng. Chem. Res., 2016, 55:1215.
[68] 郑安呐(Zheng A N), 管涌(Guang Y), 危大福(Wei D F), 徐祥(Xu X), 陈波(Chen B), 苏凌(Su L). 功能高分子学报(J. Func. Polym.), 2017, 30:367.
[69] Baskaran D, Müller A. Prog. Polym. Sci., 2007, 32:173.
[70] Jagur-Grodzinski J. Living and Controlled Polymerization:Synthesis, Characterization, and Properties of the Respective Polymers and Copolymers. NY:Nova Science Publishers, 2006. 213.
[71] Bhattacharyya D N, Lee C L, Smid J, Szwarc M. J. Phys. Chem., 1965, 69:612.
[72] Geacintov C, Smid J, Szwarc M. J. Am. Chem. Soc., 1962, 84:2508.
[73] Hofe T, Maurer A, Müller A H E. GIT Labor Fahz., 1998, 42:1127.
[74] Nagaki A, Tomida Y, Yoshida J I. Macromolecules, 2008, 41:6322.
[75] Wurm F, Wilms D, Klos J, Löwe H, Frey H. Macromol. Chem. Phys., 2008, 209:1106.
[76] Yoshida J I, Saito K, Nokami T, Nagaki A. Synlett, 2011:1189.
[77] Suga S, Yamada D, Yoshida J I. Chem. Lett., 2010, 39:404.
[78] Nagaki A, Kenmoku A, Moriwaki Y, Hayashi A, Yoshida J I. Angew. Chem. Int. Ed., 2010, 49:7543.
[79] Tonhauser C, Wilms D, Wurm F, Nicoletti E B, Maskos M, Löwe H, Frey H. Macromolecules, 2010, 43:5582.
[80] Tonhauser C, Obermeier B, Mangold C, Lowe H, Frey H. Chem. Commun., 2011, 47:8964.
[81] Cortese B, Noel T, de Croon M H J M, Schulze S, Klemm E, Hessel V. Macromol. React. Eng., 2012, 6:507.
[82] Natalello A, Morsbach J, Friedel A, Alkan A, Tonhauser C, Müller A H E, Frey H. Org. Process. Res. Dev., 2014, 18:1408.
[83] Morsbach J, Müller A H E, Berger-Nicoletti E, Frey H. Macromolecules, 2016, 49:5043.
[84] Nagaki A, Nakahara Y, Furusawa M, Sawaki T, Yamamoto T, Toukairin H, Tadokoro S, Shimazaki T, Ito T, Otake M, Arai H, Toda N, Ohtsuka K, Takahashi Y, Moriwaki Y, Tsuchihashi Y, Hirose K, Yoshida J I. Org. Process. Res. Dev., 2016, 20:1377.
[85] Iida K, Chastek T Q, Beers K L, Cavicchi K A, Chun J, Fasolka M J. Lab Chip, 2009, 9:339.
[86] Zune C, Jerome R. Prog. Polym. Sci., 1999, 24:631.
[87] Baskaran D. Prog. Polym. Sci., 2003, 28:521.
[88] Wiles D M, Bywater S. Trans. Faraday Soc., 1965, 61:150.
[89] Kunkel D, Müller A H E, Janata M, Lochmann L. Makromol. Chem. Macromol. Sym., 1992, 60:315.
[90] Lochmann L, Kola Drík J, Dosko Dc ilová D, Vozka S, Trekoval J. J. Polym. Sci., Part A:Polym. Chem., 1979, 17:1727.
[91] Baskaran D, Chakrapani S, Sivaram S. Macromolecules, 1995, 28:7315.
[92] Janata M, Lochmann L, Vlcek P, Dybal J, Müller A H E. Makromol. Chem., 1992, 193:101.
[93] Baskaran D, Müller A H E, Sivaram S. Macromolecules, 1999, 32:1356.
[94] Nagaki A, Takahashi Y, Akahori K, Yoshida J I. Macromol. React. Eng., 2012, 6:467.
[95] Nagaki A, Tomida Y, Miyazaki A, Yoshida J I. Macromolecules, 2009, 42:4384.
[96] Nagaki A, Miyazaki A, Tomida Y, Yoshida J I. Chem. Eng. J., 2011, 167:548.
[97] Reetz M T, Knauf T, Minet U, Bingel C. Angew. Chem. Int. Ed., 1988, 27:1373.
[98] Baskaran D, Müller A H E. Macromolecules, 1997, 30:1869.
[99] Baskaran D, Müller A H E. Macromol. Rapid Commun., 2000, 21:390.
[100] Nagaki A, Miyazaki A, Yoshida J I. Macromolecules, 2010, 43:8424.
[1] Xiaoguang Li, Xianglong Pang. Liquid Plasticines: Attributive Characters, Preparation Strategies and Application Explorations [J]. Progress in Chemistry, 2022, 34(8): 1760-1771.
[2] Di Pan, Peng Liu, Hongbin Zhang, Yi Tang. Continuous Flow Synthesis of Zeolites [J]. Progress in Chemistry, 2020, 32(7): 873-881.
[3] He Tao, Ma Xiaobo, Xu Zhihong, Wang Zhouyu. The Continuous Flow Micro-Reaction [J]. Progress in Chemistry, 2016, 28(6): 829-838.
[4] Liang Zhenpeng,Wang Chaoyang,Sun Qilong,Tong Zhen**. Novel Microcapsule Fabricated by LbL Nano Self-Assembly [J]. Progress in Chemistry, 2004, 16(04): 485-.
[5] Ma Lei,Chen Bin,Wu Lizhu**,Peng Mingli,Zhang Liping,Tung Chenho**. Asymmetric Photochemical Reactions Conducted within Microreactors [J]. Progress in Chemistry, 2004, 16(03): 386-.
[6] Xu Zhikang,Zhu Lingyan,Feng Linxian. Polymer Synthesis in Supercritical Carbon Dioxide [J]. Progress in Chemistry, 1998, 10(02): 202-.
Viewed
Full text


Abstract

Ionic Polymerizations in Continuous Flow