中文
Announcement
More
Progress in Chemistry 2018, Vol. 30 Issue (9): 1349-1363 DOI: 10.7536/PC180125 Previous Articles   Next Articles

• Review •

Electrode Materials Blended with Graphene/Polyaniline for Supercapacitor

Changyuan Bao, Jiajun Han*, Jinning Cheng, Ruitao Zhang   

  1. Department of Applied Chemistry, Harbin Institute of Technology, Weihai 264209, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the International S&T Cooperation Program of China (No.SQ2012ZOC600002).
PDF ( 1088 ) Cited
Export

EndNote

Ris

BibTeX

Graphene/polyaniline nanocomposites have attracted tremendous attention of the researchers because of their significant potential in the energy storage filed, especially supercapacitors. Polyaniline(PANI)is one of ideal electrode materials, due to high theoretical specific capacity and facile synthesis. However, its drawback is poor cycling life. Graphene(GN)possesses a high theoretical specific surface area and composites of polyaniline with graphene derivatives are used to acquire excellent electrochemical capacitive properties on account of the synergistic effect between the two components. In this feature article, new research results and important advances over the past few years on the synthesis of graphene-polyaniline based nanocomposite for electrochemical supercapacitors are reviewed. And we discuss how to improve the structure and performance of electrodes. In the meantime, the application of electrode materials blended with graphene-polyaniline for organic supercapacitors is introduced. Eventually, the application prospects of graphene-polyaniline nanocomposites are briefly described. The progress of graphene/polyaniline nanocomposites in the fields of supercapacitor depends on the appropriate microstructure design of the composites. The construction of an ideal 3D porous structure is one of research interests which is used to avoid the expansion and contraction of polyaniline. Furthermore, it is still difficult to find the balance between the performance and functionalization of graphene while improving the weak interfacial interaction between graphene and polyaniline. PANI-based nanocomposites with excellent mechanical properties can also play a vital role in the study of flexible quasi-solid-state supercapacitors.
Contents
1 Introduction
2 Preparation of graphene/polyaniline nanocomposites
2.1 In-situ chemical oxidative polymerization
2.2 Electro-polymerization
2.3 Interfacial polymerization
2.4 Solution mixing
2.5 LBL self-assembled
3 Structural optimization of graphene/polyaniline nanocomposites
3.1 Microstructure control of polyaniline
3.2 Composite film
3.3 3D hierarchical structure
4 Application of graphene-polyaniline nanocomposites for organic supercapacitors
5 Conclusion and outlook

CLC Number: 

[1] Zheng F L, Li G R, Ou Y N, Wang Z L, Su C Y, Tong Y X. Chemical Communications, 2010, 46(27):5021.
[2] Zhou G M, Wang D W, Feng L I, Zhang L L, Weng Z, Cheng H M. Carbon, 2011, 26(3)3:180.
[3] Jiang H, Lee P S, Li C. Energy & Environmental Science, 2012, 6(1):41.
[4] Jost K, Dion G, Gogotsi Y. Journal of Materials Chemistry A, 2014, 2(28):10776.
[5] Kumar N A, Baek J B. Chemical Communications, 2014, 50(48):6298.
[6] Chae H K, Siberio-pérez D Y, Kim J, Go Y B, Eddaoudi M, Matzger A J. Nature, 2004, 427(6974):523.
[7] Kim K S, Zhao Y, Jang H, Le S Y, Kim J M, Kim K S, Ahn J H, Kim P, Choi J Y, Hong B H. Nature, 2009, 457(7230):706.
[8] Wang H L, Hao Q L, Yang X J, Lu L, Wang X. Electrochemistry Communications, 2009, 11(6):1158.
[9] Zhang Y P, Sun X W, Pan L K, Li H B, Sun Z, Sun C Q, Tay B K. Journal of Alloys & Compounds, 2009, 480(2):L17.
[10] Yan J, Tong W, Fan Z J, Qian W Z, Zhang M L, Shen X D, Wei F. Journal of Power Sources, 2010, 195(9):3041.
[11] Hughes M, Chen G Z, Shaffer M S P, Fray D J, Windle A H. Composites Science & Technology, 2004, 64(15):2325.
[12] Zhang X, Wang J M, Liu J, Wu J, Chen H, Bi H. Carbon, 2017, 115:134.
[13] Snook G A, Kao P, Best A S. Journal of Power Sources, 2011, 196(1):1.
[14] Sun Y Q, Shi G Q. Journal of Polymer Science Part B:Polymer Physics, 2013, 51(4):231.
[15] Huang Y F, Lin C W. Polymer, 2012, 53(13):2574.
[16] Zhao T K, Ji X L, Bi P, Jin W B, Xiong C Y, Dang A, Li H, Li T H, Shang S M, Zhou Z F. Electrochimica Acta, 2017, 230:342.
[17] Xu J, Wang K, Zu S Z, Han B H, Wei Z. ACS Nano, 2010, 4(9):5019.
[18] Wang H L, Hao Q L, Yang X J, Lu L, Wang X. Nanoscale, 2010, 2(10):2164.
[19] Tayel M B, Soliman M M, Ebrahim S, Harb M E. Journal of Electronic Materials, 2016, 45(1):820.
[20] Li Z F, Zhang H, Liu Q, Sun L L, Stanciu L, Xie J. ACS Applied Materials & Interfaces, 2013, 5(7):2685.
[21] Zhao Q, Chen J H, Luo F B, Shen L, Wang Y, Wu K, Lu M G. Journal of Applied Polymer Science, 2017, 134(19):44808.
[22] Qiu H X, Han X B, Qiu F L, Yan J H. Applied Surface Science, 2016, 376:261.
[23] Nguyen V H, Lamiel C, KharismadewI D, Tran V C, Shim J J. Journal of Electroanalytical Chemistry, 2015, 758:148.
[24] Male U, Modigunta J K R. Polymer, 2017, 110:242.
[25] Liu T Z, Liu Y S, Yan X S, Fan Y F, Wang P, Cai Q, Zhang J M. Polymer Composites, 2014, 36(10):1767.
[26] Wu T, Xu X Y, Zhang L, Chen H B, Gao J P, Liu Y. RSC Advances, 2014, 4(15):7673.
[27] 涂亮亮(Tu L L), 贾春阳(Jia C Y). 化学进展(Progress in Chemistry), 2010, 22(8):1610.
[28] 安红芳(An H F), 王先友(Wang X Y), 李娜(Li N). 化学进展(Progress in Chemistry), 2009, 21(9):1832.
[29] Lin Y C, Hsu F H, Wu T M. Synthetic Metals, 2013, 184(11):29.
[30] Moussa M, Elkady M F, Zhao Z H, Majewski P, Ma J. Nanotechnology, 2016, 27(44).
[31] Wang S Y, Ma L, Gan M Y, Fu S N, Dai W Q, Zhou T, Sun X W, Wang H H, Wang H N. Synthetic Metals, 2015, 210:367.
[32] Wu X M, Wang Q G, Zhang W Z, Wang Y, Chen W X. Journal of Materials Science, 2016, 51(16):7731.
[33] Gao S Y, Zhang L I, Qiao Y D, Dong P, Shi J, Cao S K. RSC Advances, 2016, 6(64):58854.
[34] Yu M, Ma Y X, Liu J H, Li S M. Carbon, 2015, 87:98.
[35] Mitchell E, Candler J, Souza F D, Gupta R K, Gupta B K, Dong L F. Synthetic Metals, 2015, 199(199):214.
[36] Hu L W, Tu J G, Jiao S Q, Hou J G, Zhu H M, Fray D J. Physical Chemistry Chemical Physics, 2012, 14(45):15652.
[37] Xin G X, Wang Y H, Liu X X, Zhang J H, Wang Y F, Huang J J, Zang J B. Electrochimica Acta, 2015, 167(11):254.
[38] Fei X, Yang S X, Zhang Z Y, Liu H F, Xiao J W, Wan L, Luo J, Wang S, Liu Y Q. Scientific Reports, 2015, 5:9359.
[39] Gao Z, Yang W, Wang J, Yan H J, Yao Y, Ma J, Wang B, Zhang M L, Liu L H. Electrochimica Acta, 2013, 91(3):185.
[40] Wei H G, Zhu J H, Wu S J, Wei S Y, Guo Z H. Polymer, 2013, 54(7):1820.
[41] Shen J L, Yang C Y, Li X W, Wang G C. ACS Applied Materials & Interfaces, 2013, 5(17):8467.
[42] Li H L, Wang J X, Chu Q X, Wang Z, Zhang F B, Wang S C. Journal of Power Sources, 2009, 190(2):578.
[43] Mensing J P, Wisitsoraat A, Phokharatkul D, Lomas T, Tuantranont A. Composites Part B Engineering, 2015, 77:93.
[44] Nguyen V H, Tang L, Shim J J. Colloid and Polymer Science, 2013, 291(9):2237.
[45] Li D J, Li Y, Feng Y Y, Hu W P, Feng W. Journal of Materials Chemistry A, 2015, 3(5):2135.
[46] Chini M K, Chatterjee S. Flatchem, 2016, 1:1.
[47] Xiong S X, Shi Y J, Jia C, Gong M, Wu B H, Wang X Q. Electrochimica Acta, 2014, 127(5):139.
[48] Zhu J, Chen M, Qu H, Zhang X, Wei H G, Luo Z P, Colorado H A, Wei S Y, Guo Z H. Polymer, 2012, 53(25):5953.
[49] Chen Z X, Lu H B. Chemical Journal of Chinese Universities, 2013, 34(9):2020.
[50] Wu Q, Xu Y X, Yao Z Y, Liu A R, Shi G Q. ACS Nano, 2010, 4(4):1963.
[51] Fan W, Zhang C, Weng W T, Kumari P P, He C B, Liu T X. ACS Applied Materials & Interfaces, 2013, 5(8):3382.
[52] Liu S, Liu X H, Li Z P, Yang S R, Wang J Q. New Journal of Chemistry, 2011, 35(2):369.
[53] Zhou S P, Zhang H M, Zhao Q, Wang X H, Li J, Wang F S. Carbon, 2013, 52(2):440.
[54] Luo J, Ma Q, Gu H, Zheng Y, Liu X. Electrochimica Acta, 2015, 173:184.
[55] Hong X D, Zhang B B, Murphy E, Zou J L, Kim F. Journal of Power Sources, 2017, 343:60.
[56] Li L, Zhang X, Qiu J J, Weeks B L, Wang S R. Nano Energy, 2013, 2(5):628.
[57] Chatterjee S, Layek R K, Nandi A K. Carbon, 2013, 52(2):509.
[58] Tang L, Yang Z K, Duan F, Chen M Q. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2017, 520:184.
[59] Feng X M, Chen N N, Zhou J H, Li Y, Huang Z D, Zhang L, Ma Y W, Wang L H, Yan X H. New Journal of Chemistry, 2015, 39(3):2261.
[60] Fan X, Yang Z W, Liu Z. Chinese Journal of Chemistry, 2016, 34(1):107.
[61] Ke F Y, Liu Y, Xu H Y, Ma Y, Guang S Y, Zhang F Y, Lin N B, Ye M D, Lin Y H, Liu X Y. Composites Science & Technology, 2017, 142:286.
[62] Lu X J, Hui D, Yang S, Hao L, Zhang L J, Shen L F, Zhang F, Zhang X G. Electrochimica Acta, 2011, 56(25):9224.
[63] Zang X, Li X, Zhu M, Li X M, Zhen Z, He Y J, Wang K L, Wei J Q, Kang F Y, Zhu H W. Nanoscale, 2015, 7(16):7318.
[64] Wu X M, Wang Q G, Zhang W Z, Wang Y, Chen W X. Electrochimica Acta, 2016, 211:1066.
[65] 李学航(Li X H), 俞慧涛(Yu H T), 王伟仁(Wang W R),布林朝克(Bulin C K), 辛国祥(Xin G X), 张邦文(Zhang B W). 高等学校化学学报(Chemical Journal of Chinese Universities), 2017, 38(12):2306.
[66] Dinari M, Momeni M M, Goudarzirad M. Surface Engineering, 2016, 32(7):535.
[67] Lee M, Hong J D. Journal of the Korean Chemical Society, 2015, 59(1):36.
[68] Meng Y N, Wang K, Zhang Y J, Wei Z X. Advanced Materials, 2013, 25(48):6985.
[69] 傅深娜(Fu S N), 马利(Ma L), 陈红冲(Chen H C),甘孟瑜(Gan M Y). 化工新型材料(New Chemical Materials), 2017(1):7.
[70] Tang W, Peng L, Yuan C, Wang J, Mo S B, Zhao C Y, Yu Y H, Min Y G, Epstein A J. Synthetic Metals, 2015, 202:140.
[71] Ma C, Peng L, Feng Y, Shen J X, Xiao Z Q, Cai K Y, Yu Y H, Min Y, Epstein A J. Synthetic Metals, 2016, 220:227.
[72] Phokaratkul D, Mensing J P, Jaruwongrangsee K, Lomas T, Tuantranont A, Wisitsoraat A. IEEE, International Conference on Nanotechnology. IEEE, 2016:1469.
[73] Liu R, Ma L N, Huang S, Mei J, Xu J, Yuan G H. New Journal of Chemistry, 2017, 41(2):857.
[74] Fu S, Ma L, Gan M, Wang S Y, Zhang X L, Zhang J, Zhou T, Wang H H. Journal of Materials Science Materials in Electronics, 2016:1.
[75] Zhang H R, Wang J X, Chen Y Y, Wang Z, Wang S C. Electrochimica Acta, 2013, 105(26):69.
[76] Kovalska E, Kocabas C. Materials Today Communications, 2016, 7:55.
[77] Yang C Y, Sun M Q, Wang G C, Cheng Q L, Bao H, Li X W, Saha N, Saha P. Chemical Engineering Journal, 2017, 326:9.
[78] Zhou S P, Zhang H M, Wang X H, Li J, Wang F S. RSC Advances, 2013, 3(6):1797.
[79] Hu R F, Zhao J, Zhu G D, Zheng J P. Electrochimica Acta, 2018, 261:151.
[80] Zheng X W, Yu H T, Xing R G, Ge X, Sun H, Li R H, Zhang Q W. Electrochimica Acta, 2018, 260:504.
[1] Yong Zhang, Hui Zhang, Yi Zhang, Lei Gao, Jianchen Lu, Jinming Cai. Surface Synthesis of Heteroatoms-Doped Graphene Nanoribbons [J]. Progress in Chemistry, 2023, 35(1): 105-118.
[2] Fengjing Jiang, Hanchen Song. Graphite-based Composite Bipolar Plates for Flow Batteries [J]. Progress in Chemistry, 2022, 34(6): 1290-1297.
[3] Yaoyu Qiao, Xuehui Zhang, Xiaozhu Zhao, Chao Li, Naipu He. Preparation and Application of Graphene/Metal-Organic Frameworks Composites [J]. Progress in Chemistry, 2022, 34(5): 1181-1190.
[4] Hongji Jiang, Meili Wang, Zhiwei Lu, Shanghui Ye, Xiaochen Dong. Graphene-Based Artificial Intelligence Flexible Sensors [J]. Progress in Chemistry, 2022, 34(5): 1166-1180.
[5] Xiaowei Li, Lei Zhang, Qixin Xing, Jinyu Zan, Jin Zhou, Shuping Zhuo. Construction of Magnetic NiFe2O4-Based Composite Materials and Their Applications in Photocatalysis [J]. Progress in Chemistry, 2022, 34(4): 950-962.
[6] Hui Zhang, Wei Xiong, Jianchen Lu, Jinming Cai. Magnetic Properties and Engineering of Nanographene in Ultra-High Vacuum [J]. Progress in Chemistry, 2022, 34(3): 557-567.
[7] Xin Pang, Shixiang Xue, Tong Zhou, Hudie Yuan, Chong Liu, Wanying Lei. Advances in Two-Dimensional Black Phosphorus-Based Nanostructures for Photocatalytic Applications [J]. Progress in Chemistry, 2022, 34(3): 630-642.
[8] Caiwei Wang, Dongjie Yang, Xueqing Qiu, Wenli Zhang. Applications of Lignin-Derived Porous Carbons for Electrochemical Energy Storage [J]. Progress in Chemistry, 2022, 34(2): 285-300.
[9] Yang Chen, Xiaoli Cui. Titanium Dioxide Anode Materials for Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(8): 1249-1269.
[10] Xiaoxiao Xiang, Xiaowen Tian, Huie Liu, Shuang Chen, Yanan Zhu, Yuqin Bo. Controlled Preparation of Graphene-Based Aerogel Beads [J]. Progress in Chemistry, 2021, 33(7): 1092-1099.
[11] Xiangye Li, Tianjiao Bai, Xin Weng, Bing Zhang, Zhenzhen Wang, Tieshi He. Application of Electrospun Fibers in Supercapacitors [J]. Progress in Chemistry, 2021, 33(7): 1159-1174.
[12] Lei Wu, Lihui Liu, Shufen Chen. Flexible Organic Light-Emitting Diodes Using Carbon-Based Transparent Electrodes [J]. Progress in Chemistry, 2021, 33(5): 802-817.
[13] Suye Lv, Liang Zou, Shouliang Guan, Hongbian Li. Application of Graphene in Neural Activity Recording [J]. Progress in Chemistry, 2021, 33(4): 568-580.
[14] Binbin Zhu, Xiaohui Zheng, Guang Yang, Xu Zeng, Wei Qiu, Bin Xu. Mechanical Property Regulation of Graphene Oxide Separation Membranes [J]. Progress in Chemistry, 2021, 33(4): 670-677.
[15] Tianyong Zhang, Wei Wu, Jian Zhu, Bin Li, Shuang Jiang. Stretchable Conductive Polymer Composites Prepared with Nano-Carbon Fillers [J]. Progress in Chemistry, 2021, 33(3): 417-425.