中文
Announcement
More
Progress in Chemistry 2018, Vol. 30 Issue (8): 1161-1171 DOI: 10.7536/PC180122 Previous Articles   Next Articles

• Review •

Preparation and Application of γ-Polyglutamic Acid Hydrogel

Chunyan Dou1,2, Zheng Li1,2*, Guidong He1, Jixian Gong1, Xiuming Liu1,2, Jianfei Zhang1   

  1. 1. Key Laboratory of Advanced Textile Composites of Ministry of Education, School of Textiles, Tianjin Polytechnic University, Tianjin 300387, China;
    2. Key Laboratory of Science & Technology of Eco-Textile of Ministry of Education, Donghua University, Shanghai 201620, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Key R&D Program of China(No.2017YFB0309800), the National Natural Science Foundation of China(No. 31200719, 51403152, 51473122), and the Natural Science Foundation of Tianjin(No.16JCTPJC44400,14JCQNJC14200).
PDF ( 1640 ) Cited
Export

EndNote

Ris

BibTeX

Gamma-polyglutamic acid (γ-PGA) hydrogel is a kind of material with three-dimensional network structure formed by the crosslinking of γ-polyglutamic acid. Because the molecule contains a large number of carboxyl groups, it has good absorptive capacity. Since γ-PGA is derived from microorganisms, its hydrogel is a biocompatible, environmentally friendly, and multi-functional material that can be applied to the biomedicine, daily chemical, environmental and textile fields. In this paper, three crosslinking methods for preparing γ-PGA hydrogels in recent years:physical crosslinking, chemical crosslinking and enzymatic crosslinking are reviewed. Then the application of γ-PGA hydrogels in tissue engineering, supercapacitor and textile is summarized, and the future prospective tendency is presented.
Contents
1 Introduction
2 Methods to prepare γ-polyglutamic acid hydrogel
2.1 Physical crosslinking
2.2 Chemical crosslinking
2.3 Enzymatic crosslinking
3 Application of γ-polyglutamic acid hydrogel
3.1 Tissue Engineering
3.2 Super capacitor
3.3 Textile
3.4 Others
4 Conclusion

CLC Number: 

[1] Okay O. Journal of Polymer Science Part B Polymer Physics, 2011, 49(8):551.
[2] Shih I L, Van Y T. Bioresour Technol, 2001, 79(3):207.
[3] Shih I L, Van Y, T Shen M H. Mini Reviews in Medicinal Chemistry, 2004, 4(2):179.
[4] 张新民(Zhang X M).南京工业大学博士论文(Doctoral Dissertation of Nanjing Polytechnic University), 2003.
[5] 严建军(Yan J J).天津工业大学硕士论文(Master Dissertation of Tianjin Polytechnic University), 2012.
[6] Frank V D M, Kroonbatenburg L M J, Vermonden T, Van Nostrum C F, Hennink W E. Soft Matter, 2009, 6(1):187.
[7] Puppi D, Migone C, Morelli A, Bartoli C, Gazzarri M, Pasini D, Chiellini F. Journal of Bioactive & Compatible Polymers, 2016, 31(5):531.
[8] Tong Z R, Chen Y, Liu Y, Tong L, Chu J M, Xiao K C, Zhou Z Y, Dong W B, Chu X W. Marine Drugs, 2017, 15(4):91.
[9] 何贵东(He G D),李政(Li Z),华嘉川(Hua J C),巩继贤(Gong J X),张健飞(Zhang J F). 化工新型材料(New Chemical Materials), 2017, (5):223.
[10] Taniguchi M, Kato K, Matsui O, Ping X, Nakayama H, Usuki Y, Ichimura A, Fujita K, Tanaka T, Tarui Y. Journal of Bioscience & Bioengineering, 2005, 100(2):207.
[11] 吴茂琪(Wu M Q), 华嘉川(Hua J C), 何贵东(He G D), 李政(Li Z), 巩继贤(Gong J X), 张健飞(Zhang J F). 印染(Dyeing and Finishing), 2016, (16):52.
[12] Tsao C T, Chang C H, Lin Y Y, Wu M F, Wang J L, Han J L, Hsieh K H. Carbohydrate Research, 2010, 345(12):1774.
[13] Lin W C, Yu D G, Yang M C. Colloids & Surfaces B Biointerfaces, 2006, 47(1):43.
[14] Fan Z P, Cheng P, Liu M, Li D C, Liu G Q, Zhao Y N, Ding Z, Chen F, Wang B Q, Tan X X, Wang Z P, Han J. New Journal of Chemistry, 2017, 41(16):8656.
[15] Yang Q Z, Song F F, Zou X Q, Liao L Q. Journal of Biomaterials Science Polymer Edition, 2017, 28(5):431.
[16] 高春梅(Gao C M), 柳明珠(Liu M Z), 吕少瑜(Lv S Y),陈晨(Chen C), 黄银娟(Huang Y J), 陈远谋(Chen Y M).化学进展(Progress in Chemistry), 2013, 25(6):1012.
[17] Salvador M. World Journal of Pharmacy & Pharmaceuticalences, 2017, 703.
[18] Hsieh C Y, Tsai S P, Wang D M, Chang Y N, Hsieh H J. Biomaterials, 2005, 26(28):5617.
[19] 刘璐(Liu L), 王淑芳(Wang S F), 李灵芝(Li L Z), 李正超(Li Z C). 中国急救复苏与灾害医学杂志(China Journal of Emergency Resuscitation and Disaster Medicine), 2014, 9(5):406.
[20] 王建涛(Wang J T), 潘晓晨(Pan X C), 王淑芳(Wang S F). 离子交换与吸附(Ion Exchange and Adsorption), 2016, (4):297.
[21] Tsao C T, Chang C H, Lin Y Y, Wu M F, Wang J L, Tai H Y, Han J L, Hsieh K H. Carbohydrate Polymers, 2011, 84(2):812.
[22] Kuo Y C, Ku H F, Rajesh R. Materials Science & Engineering:C, 2017, 78:265.
[23] Dankers P Y W, Hermans T M, Baughman T W, Kamikawa Y, Kieltyka R E, Bastings M M C, Janssen H M, Sommerdijk N A J M, Larsen A, Luyn M J A V. Advanced Materials, 2012, 24(20):2703.
[24] Nagahara S, Matsuda T. Polymer Gels & Networks, 1996, 4(2):111.
[25] Hennink W E, Nostrum C F V. Advanced Drug Delivery Reviews, 2012, 64(1):13.
[26] 张缅缅(Zhang M M). 上海应用技术学院硕士论文(Master Dissertation of Shanghai Institute of Technology), 2015.
[27] 马霞(Ma X), 李路遥(Li L Y), 张缅缅(Zhang M M), 于海燕(Yu H Y). 农业工程学报(Transactions of the Chinese Society of Agricultural Engineering), 2016, (S1):333.
[28] 李贵飞(Li G F), 吴杰(Wu J), 王波(Wang B), 张伟骏(Zhang W J), 颜世峰(Yan S F), 尹静波(Yin J B). 高等学校化学学报(Chemical Research In Chinese Universities), 2015, (12):2582.
[29] 戴丽莎(Dai L S), 房邦仁(Fang B R), 梁朝伟(Liang C W), 曾戎(Zeng R), 屠美(Tu M), 赵剑豪(Zhao J S). 高分子材料科学与工程(Polymer Materials Science & Engineering), 2017, (07):167.
[30] Murakami S, Aoki N. Biomacromolecules, 2006, 7(7):2122.
[31] 李星(Li X), 颜世峰(Yan S F), 简宇航(Jian Y H), 尹静波(Yin J B). 高等学校化学学报(Chemical Research In Chinese Universities), 2017, (05):872.
[32] Kunioka M. Kōbunshi Rombun Shū, 1993, 50(10):755.
[33] Choi H J, Kunioka M. Radiation Physics & Chemistry, 1995, 46(2):175.
[34] 刘静(Liu J), 金映虹(Jin Y H), 杨超(Yang C), 张斌(Zhang B), 郑承纲(Zheng C G), 宋存江(Song C J). 离子交换与吸附(Ion Exchange and Adsorption), 2007, 23(2):129.
[35] 张超(Zhang C), 曾雯(Zeng W), 李皓(Li H), 蒋庆(Jiang Q). 广东省生物医学工程学会.广东省生物医学工程学会成立32周年纪念大会暨2012广州(国际)生物医学工程学术大会论文集(Guangdong Institute of Biomedical Engineering. Proceedings of the 32nd Anniversary Conference of Guangdong Institute of Biomedical Engineering and the 2012 Guangzhou (International) Conference on Biomedical Engineering), 2012.
[36] 庄华红(Zhuang H H), 王淑芳(Wang S F), 高靖辰(Gao J C), 洪彦航(Hong Y H), 高伟霞(Gao W X), 宋存江(Song C J). 应用化学(Chinese Journal of Applied Chemistry), 2014, 31(3):245.
[37] Liu M, Zeng X, Ma C, Yi H, Ali Z, Mou X B, Li S, Deng Y, He N Y. Bone Research, 2017, 5(2):75.
[38] Yan S F, Zhang X, Zhang K X, Di H, Feng L, Li G F, Fang J J, Cui L, Chen X S, Yin J B. Journal of Materials Chemistry B, 2015, 4(5):947.
[39] Yan S F, Wang T T, Li X, Jian Y H, Zhang K X, Li G F, Yin J B. RSC Advances, 2017, 7(28):17005.
[40] Yan S F, Wang T T, Feng L, Zhu J, Zhang K X, Chen X S, Cui L, Yin J B. Biomacromolecules, 2014, 15(12):4495.
[41] Pérezmadrigal M M, Edo M G, Diaz A, Puiggali J, Aleman C. Journal of Physical Chemistry C, 2017, 121(6):3182.
[42] 李政(Li Z).CN 103013106 A, 2013.
[43] 宋存江(Song C J).CN 102321256 A, 2012.
[44] Hua J C, Li Z, Xia W, Yang N, Zhang J X, Zhang J F, Qiao C S. Materials Science & Engineering C, 2016, 61:879.
[45] Raia N R, Partlow B P, McGill M, Kimmerling E P, Ghezzi C E, Kaplan D L. Biomaterials, 2017, 131:58.
[46] Jin R, Lin C, Cao A N. Polymer Chemistry, 2013, 5(2):391.
[47] Sofia S J, Amarjitsingh, Kaplan D L. Journal of Macromolecular Science:Part A Chemistry, 2002, 39(10):1151.
[48] Ren K X, He C L, Cheng Y L, Li G, Chen X S. Polymer Chemistry, 2014, 5(17):5069.
[49] Fan Z, Zhang Y, Zhang W, Li X. Journal of Applied Polymer Science, 2015, 132(30):42301.
[50] Shouji T, Yamamoto K, Kadokawa J. International Journal of Biological Macromolecules, 2017, 97:99.
[51] Puente P D L, Ludeña D. Experimental Cell Research, 2014, 322(1):1.
[52] 胡伟康(Hu W K), 曾雯(Zeng W), 李皓(Li H), 张超(Zhang C), 蒋庆(Jiang Q). 全国高分子学术论文报告会(National Symposium on Polymer Academic Papers).上海. 2013.
[53] Tibbitt M W, Anseth K S. Biotechnology & Bioengineering, 2009, 103(4):655.
[54] Li W, Wang J S, Ren J S, Qu X G. Advanced Materials, 2013, 25(46):6737.
[55] Shirbin S J, Karimi F, Chan N J, Heath D E, Qiao G G. Biomacromolecules, 2016, 17(9):2981.
[56] 王静心(Wang J X), 李政(Li Z), 张秋亚(Zhang Q Y), 乔长晟(Qiao C S), 张健飞(Zhang J F). 印染(Dyeing & Finishing), 2013, (24):1.
[57] 蔡红兵(Cai H B). 南昌大学(Master Dissertation of Nanchang University), 2012.
[58] Inbaraj B S, Chiu C P, Ho G H, Yang J, Chen B H. Journal of Hazardous Materials, 2006, 137(1):226.
[59] 张健飞(Zhang J F). CN 102677473 A
[60] Hua J C, Li Z, Xia W, Gong J X, Zhang J F, Qiao C S. Key Engineering Materials, 2015, 671:191.
[61] Li Z, He G D, Hua J C, Wu M Q, Guo W, Gong J X, Zhang J F, Qiao C S. RSC Advances, 2017, 7(18):11085.
[62] 朱建志(Zhu J Z). 东华大学硕士论文(Master Dissertation of Donghua University), 2016.
[1] Dandan Wang, Zhaoxin Lin, Huijie Gu, Yunhui Li, Hongji Li, Jing Shao. Modification and Application of Bi2MoO6 in Photocatalytic Technology [J]. Progress in Chemistry, 2023, 35(4): 606-619.
[2] Xuedan Qian, Weijiang Yu, Junzhe Fu, Youxiang Wang, Jian Ji. Fabrication and Biomedical Application of Hyaluronic Acid Based Micro- and Nanogels [J]. Progress in Chemistry, 2023, 35(4): 519-525.
[3] Yiming Chen, Huiying Li, Peng Ni, Yan Fang, Haiqing Liu, Yunxiang Weng. Catechol Hydrogel as Wet Tissue Adhesive [J]. Progress in Chemistry, 2023, 35(4): 560-576.
[4] Liangchun Li, Renlin Zheng, Yi Huang, Rongqin Sun. Self-Sorting Assembly in Multicomponent Self-Assembled Low Molecular Weight Hydrogels [J]. Progress in Chemistry, 2023, 35(2): 274-286.
[5] Xuan Li, Jiongpeng Huang, Yifan Zhang, Lei Shi. 1D Nanoribbons of 2D Materials [J]. Progress in Chemistry, 2023, 35(1): 88-104.
[6] Xu Zhang, Lei Zhang, Shanen Huang, Zhifang Chai, Weiqun Shi. Preparation of Salt-Inclusion Materials in High-Temperature Molten Salt System and Their Potential Application [J]. Progress in Chemistry, 2022, 34(9): 1947-1956.
[7] Yuexiang Zhu, Weiyue Zhao, Chaozhong Li, Shijun Liao. Pt-Based Intermetallic Compounds and Their Applications in Cathodic Oxygen Reduction Reaction of Proton Exchange Membrane Fuel Cell [J]. Progress in Chemistry, 2022, 34(6): 1337-1347.
[8] Shuaiwei Peng, Zhuofu Tang, Bing Lei, Zhiyuan Feng, Honglei Guo, Guozhe Meng. Design and Application of Bionic Surface for Directional Liquid Transportation [J]. Progress in Chemistry, 2022, 34(6): 1321-1336.
[9] Jiahui Ma, Wei Yuan, Simin Liu, Zhiyong Zhao. Self-Assembly of Small Molecule Modified DNA and Their Application in Biomedicine [J]. Progress in Chemistry, 2022, 34(4): 837-845.
[10] Hong Li, Xiaodan Shi, Jieling Li. Self-Assembled Peptide Hydrogel for Biomedical Applications [J]. Progress in Chemistry, 2022, 34(3): 568-579.
[11] Yue Gong, Yizhu Cheng, Yinchun Hu. Preparation of Polymer Conductive Hydrogel and Its Application in Flexible Wearable Electronic Devices [J]. Progress in Chemistry, 2022, 34(3): 616-629.
[12] Caiwei Wang, Dongjie Yang, Xueqing Qiu, Wenli Zhang. Applications of Lignin-Derived Porous Carbons for Electrochemical Energy Storage [J]. Progress in Chemistry, 2022, 34(2): 285-300.
[13] Xueer Cai, Meiling Jian, Shaohong Zhou, Zefeng Wang, Kemin Wang, Jianbo Liu. Chemical Construction of Artificial Cells and Their Biomedical Applications [J]. Progress in Chemistry, 2022, 34(11): 2462-2475.
[14] Zitong Zhao, Zhenzhen Zhang, Zhihong Liang. The Activity Origin, Catalytic Mechanism and Future Application of Peptide-Based Artificial Hydrolase [J]. Progress in Chemistry, 2022, 34(11): 2386-2404.
[15] Xuechuan Wang, Yansong Wang, Qingxin Han, Xiaolong Sun. Small-Molecular Organic Fluorescent Probes for Formaldehyde Recognition and Applications [J]. Progress in Chemistry, 2021, 33(9): 1496-1510.