中文
Announcement
More
Progress in Chemistry 2018, Vol. 30 Issue (8): 1047-1066 DOI: 10.7536/PC180113 Previous Articles   Next Articles

• Review •

Synthesis of Azetidines

Zhicheng Fu, Jiaxi Xu*   

  1. State Key Laboratory of Chemical Resource Engineering, Department of Organic Chemistry, Faculty of Science, Beijing University of Chemical Technology, Beijing 100029, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No. 21572017, 21772010).
PDF ( 2561 ) Cited
Export

EndNote

Ris

BibTeX

Azetidines, as an important class of saturated four-membered azaheterocycles, are not only important raw materials, intermediates, chiral auxiliaries and catalysts in organic synthesis, but also crucial active structural units of amino acids, alkaloids, natural and synthetic biological and medicinal active compounds. Thus, it is critical to develop methods for constructing azetidine structural motifs. The review introduces the development of the synthesis of azetidines and mainly focuses on advances of the synthesis of azetidines during recent 10 years. Furthermore, it demonstrates the new achievements in the synthesis of azetidines mainly including cyclizations by the C-N bond formation and by the C-C bond formation, amine-catalyzed cycloaddition of allenoates and imines, photocycloadditions of imines and alkenes, ring contraction and expansion rearrangements, and reduction of azetidin-2-ones(β-lactams).
Contents
1 Introduction
2 Cyclizations by the C-N bond formation
2.1 Nucleophilic substitution reactions
2.2 Reductive cyclizations of β-haloalkylimines
2.3 Cyclizations of allylic and homoallylic amines
2.4 Opening of epoxides with amines
2.5 Opening of aziridines
2.6 Pd-Catalyzed cyclizations
3 Cyclizations by the C-C bond formation
3.1 Nucleophilic displacements
3.2 Cyclizations involving Michael additions
4 Cycloadditions
4.1 Amine-catalyzed cycloadditions of allenoates and imines
4.2[2+2]Photocycloadditions of imines and alkenes
5 Ring contraction and expansion rearrangements
5.1 Ring contractions of five-membered heterocycles
5.2 Ring expansions of three-membered heterocycles
6 Reduction of azetidin-2-ones
7 Conclusion

CLC Number: 

[1] Gabriel S, Weiner J. Ber., 1888, 21:2669.
[2] Crowell N H, Phillps B. Chem. Rev., 1979, 79:331.
[3] Kimpe N D. Comprehensive Heterocyclic Chemistry Ⅱ, 1996. 507.
[4] Brandi A, Cicchi S, Cordero F M. Chem. Rev., 2008, 108:3988.
[5] Singh G S, D'hooghe M, Kimpe N D. Comprehensive Heterocyclic Chemistry Ⅲ, 2008. 2.
[6] Couty F, Evano G. Synlett, 2009, 19:3053.
[7] Fowden L. Nature, 1955, 176:347.
[8] Couty F, Evano G. Org. Prep. Proced. Int., 2006, 38:427.
[9] Shioiri T, Hamada Y, Matsuura F. Tetrahedron Lett., 1995, 51:3939.
[10] Miyakoshi K, Oshita J, Kitahara T. Tetrahedron Lett., 2001, 57:3355.
[11] Singh S, Crossley G, Ghosal S, Lefievre Y, Pennington M W. Tetrahedron Lett., 2005, 46:1419.
[12] Knapp S, Dong Y H. Tetrahedron Lett., 1997, 38:3813.
[13] Beauhaire J, Ducrot P H. Heterocycles, 2012, 84:261.
[14] Liu D G. Lin G Q. Tetrahedron Lett., 1999, 40:337.
[15] Ohshita K, Ishiyama H, Takahashi Y, Ito J, Mikami Y, Kobayashi J. Bioorg. Med. Chem., 2007, 15:4910.
[16] Raghavan S, Krishnaiah V. J. Org. Chem., 2009, 75:748.
[17] Alvi K A, Jaspars M, Crews P. Bioorg. Med. Chem. Lett., 1994, 4:2447.
[18] Di Y T, He H P, Wang Y S, Li L B, Lu Y, Gong J B, Fang X, Kong N C, Li S L, Zhu H J, Hao X J. Org. Lett., 2007, 9:1355.
[19] Chen W Q, Huang T T, He X Y, Meng Q Q, You D L, Bai L Q, Li J L, Wu M X, Li R, Xie Z J, Zhou H C, Zhou X F, Tan H R, Deng Z X. J. Biol. Chem., 2009, 284:10627.
[20] Isono K, Asahi K, Suzuki S. J. Am. Chem. Soc., 1969, 91:7490.
[21] Kayiyama I, Kato H, Nehira T, Frisvad J C, Sherman D H, Williams R M, Tsukamoto S. Angew. Chem. Int. Ed., 2016, 55:1128.
[22] Lai C Y, Lo I W, Hewage R T, Chen Y C, Chen C T, Lee C F, Lin S, Tang M C, Lin H C. Angew. Chem. Int. Ed., 2017, 56:9478.
[23] Bott T M, West F G. Heterocycles, 2012, 84:223.
[24] Hazelard D, Compain P. Org. Biomol. Chem., 2017, 15:3806.
[25] Rama A V, Gurjar M K, Kaiwar V. Tetrahedron:Asymmetry, 1992, 3:859.
[26] Eriksson B I, Carlsson S, Halvarsson M, Risberg B, Mattsson C. Thrombosis Haemostasis, 1997, 78:1404.
[27] Maetani M, Zoller J, Melillo B, Verho O, Kato N, Pu J, Comer E, Schreiber S L. J. Am. Chem. Soc., 2017, 139:11300.
[28] Wellington S, Nag P P, Michalska K, Johnston S E, Jedrzejczak R P, Kaushik V K, Clatworthy A E, Siddiqi N, McCarren P, Bajrami B, Maltseva N I, Combs S, Fisher S L, Joachimiak A, Schreiber S L, Hung D T. Nat. Chem. Biol., 2017, 13:943.
[29] 陈兴鹏(Chen X P), 许家喜(Xu J X). 化学进展(Prog. Chem.), 2017, 29:181.
[30] Antermite D, Degennaro L, Luisi R. Org. Biomol. Chem., 2017, 15:34.
[31] Koji T, Yasuo W. Physiol. Behavior, 2000, 70:19.
[32] David H C., Richard P M, Dwigh A S T, Young S L. Synth. Commun., 1988, 18:205.
[33] Wang M C, Zhang Q J, Zhao W X, Wang X D. Ding X, Jing T T, Song M P. J. Org. Chem., 2008, 73:168.
[34] Bouazaoui M, Martinez J, Cavelier F. Eur. J. Org. Chem., 2009, 17:2729.
[35] Meyers M J, Muizebelt I, Wiltenburg J, Brown D L, Thorarensen A. Org. Lett., 2009, 17:3523.
[36] Sun J, Gong S S, Sun Q. Adv. Materials Res., 2014, 830:135.
[37] Lensen N, Marais J, Brigaud T. Org. Lett., 2015, 17:342.
[38] Yadav L D S, Srivastava V P, Patel R. Tetrahedron Lett., 2008, 49:5652.
[39] Concellón J M, Bernad P L, Pérez-Andrés J A. Tetrahedron Lett., 2000, 41:1231.
[40] Ye Y, Wang H, Fan R H. Org. Lett., 2010, 12:2802.
[41] Miao C B, Dong C P, Zhang M, Ren W L, Meng Q, Sun X Q, Yang H T. J. Org. Chem., 2013, 78:4329.
[42] Ju Y H, Varma R S. J. Org. Chem., 2006, 71:135.
[43] Jin J Z, Zhang J. Adv. Materials Res., 2012, 455:635.
[44] Evans G B, Fumeaux R H, Greatrex B, Murkin A S, Schramm V L, Tyler P C. J. Med. Chem., 2008, 51:948.
[45] Glawar A F G, Jenkinson S F, Thompson A L, Nakagawa S, Kato A, Butters T D, Fleet G W J. Curr. Med. Chem., 2013, 8:658.
[46] Glawar A F G, Martínez R F, Ayers B J, Hollas M A, Ngo N, Nakagawa S A, Kato A, Butters T D, Fleet G W J, Fleeta J, Jenkinson S F. Org. Biomol. Chem., 2016, 14:44.
[47] Dowling M S, Fernando D P, Jie H, Liu B, Smith A C. J. Org. Chem., 2016, 7:81.
[48] Orain D, Hintermann S, Pudelko M, Carballa D, Jedrzejczak A. Synlett, 2015, 26:1815.
[49] De Kimpe N, Boeykens M, Tourwe D. Tetrahedron, 1998, 54:2619.
[50] Aelterman W, de Kimpe N, Declercq J P. J. Org. Chem., 1998, 63:6.
[51] Van Brabandt W, Verniest G, de Smaele D, Duvey G, de Kimpe N. J. Org. Chem., 2006, 71:7100.
[52] Robin S, Rousseau G. Eur. J. Org. Chem., 2000, 32:3007.
[53] Pannecoucke X, Outurquin F, Paulmier C. Eur. J. Org. Chem., 2002, 6:995.
[54] Franck X, Leleu S, Outurquin F. Tetrahedron Lett., 2010, 51:4437.
[55] 郑勇鹏(Zheng Y P), 许家喜(Xu J X). 化学进展(Prog. Chem.), 2014, 26:1471.
[56] Pradhan T K, Krishnan K S, Vasse J L, Szymoniak J. Org. Lett., 2011, 13:1793.
[57] Feula A, Dhillon S S, Byravan R, Sangha M, Ebanks R, Salih M A H, Spencer N, Male L. Magyary I, Deng W P, Muller F, Fossey J S. Org. Biomol. Chem., 2013, 11:5083.
[58] Reddy V R, Udaykiran D, Chintamani U S, Reddy E M, Kameswararao C, Madhusudhan G. Org. Process Res. Dev., 2011, 15:462.
[59] Medjahdi M, Gonzalez-Gomez J C, Foubelo F, Yus M. J. Org. Chem., 2009, 74:7859.
[60] Faigl F, Kovacs E, Turczel G, Szollosy A, Mordini A, Balazs L, Holczbauer T, Czugler M. Tetrahedron:Asymmetry, 2012, 23:1607.
[61] Nadir U K, Arora A. Indian J. Chem. Sect. B, 1998, 37:163.
[62] Nadir U K, Arora A. Indian J. Chem. Sect. B, 1993, 32:297.
[63] Nadir U K, Sharma R L, Koul V K. J. Chem. Soc. Perkin Trans. 1, 1991, 2015.
[64] Nadir U K, Sharma R L, Koul V K. Tetrahedron, 1989, 45:1851.
[65] Nadir U K, Koul V K. Synthesis, 1983, 7:554.
[66] Malik S, Nadir U K. Synlett, 2008, 39:108.
[67] Nadir U K, Arora A. J. Chem. Soc. Perkin. Trans 1, 1995, 2605.
[68] Malik S. Nadir U K, Pandey P S. Syn. Commun., 2010, 40:1631.
[69] 马琳鸽(Ma L G), 许家喜(Xu J X). 化学进展(Prog. Chem.), 2004, 16:222.
[70] 许家喜(Xu J X). 化学进展(Prog. Chem.), 2007, 19:700.
[71] Jensen K L, Nielsen D U, Jamison T F. Chem. Eur. J., 2015, 21:7379.
[72] Kang S K, Baik T G, Kulak A N. Synlett, 1999, 3:324.
[73] Ohno H, Anzai M, Toda A, Ohishi S, Fujii N, Tanaka T, Takemoto Y, Ibuka T. J. Org. Chem., 2001, 66:4904.
[74] He G, Zhao Y S, Zhang S Y, Lu C X, Chen G. J. Am. Chem. Soc., 2012, 34:3.
[75] Zhao J, Zhao X J, Cao P, Liu J K, Wu B. Org. Lett., 2017, 19:4880.
[76] Wei X, Liu D L, An Q J, Zhang W B. Org. Lett., 2015, 47:5768.
[77] Payne P R, Garcia P, Eisenberger P, Yim J C H, Schafer L L. Org. Lett., 2013, 15:2182.
[78] Gouthaman S, Shanmugam P, Mandal A B. Tetrahedron, 2013, 54:3007.
[79] Fache F, Schulz E, Tommasino M L, Lemaire M. Chem. Rev., 2000, 100:2159.
[80] Blaser H U, Malan C, Pugin B, Spindler F, Steiner H, Studer M. Adv. Synth. Catal., 2003, 345:103.
[81] Shang Y J, Liao K S, He X W, Hu J S. Tetrahedron, 2013, 69:10134.
[82] Schmid S C, Guzei I A, Schomaker J M. Angew. Chem. Int. Ed., 2017, 56:12229.
[83] Nicola A, Einhorn C, Einhorn J, Luche J L. Chem. Commun., 1994, 25:879.
[84] Blythin D J, Green M J, Lauzon M J.R, Shue H J. J. Org. Chem., 1994, 59:6098.
[85] Lowe J T, Lee M D, Akella L B, Davoine E, Donckele E J, Durak L, Duvall J R, Gerard B, Holson E B, Joliton A, Kesavan S, Lemercier B C, Liu H B, Marie J C, Mulrooney C A, Muncipinto G, Welzel-O'Shea M, Panko L M, Rowley A, Suh B C, Thomas M, Wagner F F, Wei J Q, Foley M A, Marcaurelle L A. J. Org. Chem., 2012, 77:7187.
[86] Drouillat B, Wright K, Marrot J, Couty F. Tetrahedron:Asymmetry, 2012, 23:690.
[87] Couty F, Evano G, Rabasso N. Tetrahedron:Asymmetry, 2003, 14:2407.
[88] Couty F, Durrat F, Prim D. Tetrahedron Lett., 2003, 44:5209.
[89] Fritz S P, Moya J F, Unthank M G, McGarrigle E M, Aggarwal V K. Synthesis, 2012, 43:1584.
[90] Yang N C, Yang D H. J. Am. Chem. Soc., 1958, 80:2913.
[91] Yang L J, Li S, Wang S, Nie J, Ma J A. J. Org. Chem., 2014, 79:3547.
[92] Denis J B, Masson G, Retailleau P, Zhu J P. Angew. Chem. Int. Ed., 2011, 50:5356.
[93] Swenton J S, Hyatt J A. J. Am. Chem. Soc., 1974, 96:4879.
[94] Howard K A, Koch T H. J. Am. Chem. Soc., 1975, 97:7288.
[95] Sakamoto R, Inada T, Sakurai S, Maruoka K. Org. Lett., 2016, 18:6252.
[96] Kumarasamy E, Kandappa S K, Raghunathan R, Jockusch S, Sivaguru J. Angew. Chem. Int. Ed., 2017, 56:7056.
[97] Kern N, Felten A S, Weibel J M, Pale P, Blan A. Org. Lett., 2014, 16:6104.
[98] Stankovic S, Catak S, Dhooghe M, Goossens, H, Tehrani K A, Bogaert P, Waroquier M V, Speybroeck V, de Kimpe N. J. Org. Chem., 2011, 76:2157.
[99] Stankovic S, D'hooghe M, Tehrani K A, de Kimpe N. Tetrahedron. Lett., 2012, 53:107.
[100] Yamashita M, Ojima I. J. Am. Chem. Soc., 1983, 105:6339.
[101] Zhang Z B, Zhao N, Ren W S, Chen L, Song H B, Zi G F. Inorg. Chem. Commun., 2012, 20:234.
[102] 周婵(Zhou C), 许家喜(Xu J X). Prog. Chem. (化学进展), 2011, 23:165.
[103] 周婵(Zhou C), 许家喜(Xu J X). Prog. Chem. (化学进展), 2012, 24:238.
[104] Huang J X, Du D M, Xu J X. Synthesis, 2006, (2):315.
[105] Li X Y, Yang Z Y, Xu J X. Curr. Org. Synth., 2013, 10:169.
[106] Xu W, Xu J X. Curr. Org. Synth., 2016, 13:73.
[107] 李思琦(Li S Q), 许家喜(Xu J X). 化学进展(Prog. Chem.), 2016, 28:1798.
[108] Xu J X. Synthesis of Four-to Seven-Membered Heterocycles by Ring Expansion:Ring Expansions of Thiiranes and Thietanes. In D'hooghe M, Ha H J. Eds. Synthesis of 4-to 7-membered Heterocycles by Ring Expansion. Top. Heterocycl. Chem., 2016, 41:311. Springer, Switzerland.
[1] Jing He, Jia Chen, Hongdeng Qiu. Synthesis of Traditional Chinese Medicines-Derived Carbon Dots for Bioimaging and Therapeutics [J]. Progress in Chemistry, 2023, 35(5): 655-682.
[2] Jianfeng Yan, Jindong Xu, Ruiying Zhang, Pin Zhou, Yaofeng Yuan, Yuanming Li. Nanocarbon Molecules — the Fascination of Synthetic Chemistry [J]. Progress in Chemistry, 2023, 35(5): 699-708.
[3] Ruyue Cao, Jingjing Xiao, Yixuan Wang, Xiangyu Li, Anchao Feng, Liqun Zang. Cascade RAFT Polymerization of Hetero Diels-Alder Cycloaddition Reaction [J]. Progress in Chemistry, 2023, 35(5): 721-734.
[4] Xinyue Wang, Kang Jin. Chemical Synthesis of Peptides and Proteins [J]. Progress in Chemistry, 2023, 35(4): 526-542.
[5] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[6] Zixuan Liao, Yuhui Wang, Jianping Zheng. Research Advance of Carbon-Dots Based Hydrophilic Room Temperature Phosphorescent Composites [J]. Progress in Chemistry, 2023, 35(2): 263-373.
[7] Yehjun Lim, Yanmei Li. Chemical Synthesis/Semisynthesis of Post-Translational Modified Tau Protein [J]. Progress in Chemistry, 2022, 34(8): 1645-1660.
[8] Peng Xu, Biao Yu. Challenges in Chemical Synthesis of Glycans and the Possible Problems Relevant to Condensed Matter Chemistry [J]. Progress in Chemistry, 2022, 34(7): 1548-1553.
[9] Deshan Zhang, Chenho Tung, Lizhu Wu. Artificial Photosynthesis [J]. Progress in Chemistry, 2022, 34(7): 1590-1599.
[10] Fangyuan Li, Junhao Li, Yujie Wu, Kaixiang Shi, Quanbing Liu, Hongjie Peng. Design and Preparation of Electrode Nanomaterials with “Yolk-Shell”Structure for Lithium/Sodium-Ion/Lithium-Sulfur Batteries [J]. Progress in Chemistry, 2022, 34(6): 1369-1383.
[11] Shiyu Li, Yongguang Yin, Jianbo Shi, Guibin Jiang. Application of Covalent Organic Frameworks in Adsorptive Removal of Divalent Mercury from Water [J]. Progress in Chemistry, 2022, 34(5): 1017-1025.
[12] Xiaoqing Ma. Graphynes for Photocatalytic and Photoelectrochemical Applications [J]. Progress in Chemistry, 2022, 34(5): 1042-1060.
[13] Jun Dong, Jiaxi Xu. An Overview on the Synthesis and Reactions of Sulfines [J]. Progress in Chemistry, 2022, 34(5): 1088-1108.
[14] Xiuli Shao, Siqi Wang, Xuan Zhang, Jun Li, Ningning Wang, Zheng Wang, Zhongyong Yuan. Fabrication and Application of MFI Zeolite Nanosheets [J]. Progress in Chemistry, 2022, 34(12): 2651-2666.
[15] Baoyou Yan, Xufei Li, Weiqiu Huang, Xinya Wang, Zhen Zhang, Bing Zhu. Synthesis of Metal-Organic Framework-NH2/CHO and Its Application in Adsorption Separation [J]. Progress in Chemistry, 2022, 34(11): 2417-2431.
Viewed
Full text


Abstract

Synthesis of Azetidines