中文
Announcement
More
Progress in Chemistry 2018, Vol. 30 Issue (8): 1121-1132 DOI: 10.7536/PC180112 Previous Articles   Next Articles

Special Issue: 酶化学

• Review •

Artificial Metalloenzymes Based on Peptide Self-Assembly

Jiqian Wang*, Hongyu Yan, Jie Li, Liyan Zhang, Yurong Zhao, Hai Xu*   

  1. State Key Laboratory of Heavy Oil Processing, Center for Bioengineering and Biotechnology, China University of Petroleum(East China), Qingdao 266580, China
  • Received: Revised: Online: Published:
  • Supported by:
    This work was supported by the National Natural Science Foundation of China(No.21673293, 21573287, 21503275).
PDF ( 1093 ) Cited
Export

EndNote

Ris

BibTeX

Mimetic, or artificial enzymes are molecules or molecular aggregates that mimic the structural features of enzyme active center, such as shape, size, and microenvironment at molecular level. With the development of nanoscience and supramolecular technologies, the construction of supramolecular mimetic enzymes with specific catalytic activity has become a hotspot in both scientific research and application. Artificial peptide metalloenzymes have peptide molecules as the basic units, and the self-assembly of peptide supramolecular structure with enzymatic catalytic activity is driven by a series of non-covalent interactions synergistically. The structure and biochemical properties of peptide metalloenzyme are akin to those of natural enzymes. Furthermore, since peptide molecules are biocompatible and easy to be modified, artificial peptides metalloenzymes would be ideal candidates for artificial enzyme fabrication with specific functions. In this review, the progress of the mimetic metalloenzymes fabrication through peptide self-assembly has been summarized. The effects of peptide self-assembly, supramolecular structure, microenvironment of metal active center, as well as pH value on the artificial enzyme catalytic activity has been reviewed. The enhancement of the stability of self-assembled nanostructures, the improvement of catalytic activity and the broadening of the reaction types catalyzed by artificial enzymes are the main challenge in artificial peptides metalloenzyme study. Fabrication more stable peptide self-assembled nanostructure and more precise active centers to mimic those of the natural enzymes might be the right strategies.
Contents
1 Introduction
2 Effects of self-assembly nanostructures on metalloenzyme
2.1 Nanotube
2.2 Nanofibers
2.3 Coiled-coil
3 The secondary structure of peptide self-assemblies in metalloenzyme
3.1 β-hairpin
3.2 α-helix
4 Effects of spatial structure on metalloenzyme
4.1 Regulation of metal ions
4.2 Formation of protein interface
4.3 Hydrophobic interface
5 Metal-free peptide self-assembly artificial enzyme
6 Conclusion and outlook

CLC Number: 

[1] Bairoch A. Nucleic Acids Res., 2000, 28:304.
[2] Young D D, Nichols J, Kelly R M, Deiters A. J. Am. Chem. Soc., 2008, 130:10048.
[3] 刘盛华(Liu J J), 吴成泰(Wu C T). 化学通报(Chem.), 1998, 4:001.
[4] Paramonov S E, Jun H W, Hartgerink J D. J. Am. Chem. Soc., 2006, 128:7291.
[5] Cox E H, McLendon G L. Curr. Opin. Chem. Biol., 2000, 4:162.
[6] Wiester M J, Ulmann P A, Mirkin C A. Angew. Chem. Int. Ed., 2011, 50:114.
[7] Friedmann M P, Torbeev V, Zelenay V, Sobol A, Greenwald J, Riek R. PLoS One, 2015, 10(12):e0143948.
[8] Raynal M, Ballester P, Vidal-Ferran A, Leeuwen P W. Chem. Soc. Rev., 2014, 43:1734.
[9] Petrik I D, Liu J, Lu Y. Curr. Opin. Chem. Biol., 2014, 19:67.
[10] Shen X F, Deng X R, Pang Y H. RSC Adv., 2014, 4:21840.
[11] Dublin S N, Conticello V P. J. Am. Chem. Soc., 2008, 130:49.
[12] Dong J J, Canfield J M, Mehta A K, Shokes J E, Tian B,Childers W S,Simmons J A, Mao Z X, Scott R A, Warncke K, Lynn D G. Proc. Natl. Acad. Sci.U.S.A., 2007, 104:13313.
[13] Ayton S, Lei P, Bush A I. Free Radicals Biol. Med., 2013, 62:76.
[14] Lowik D W P M, Leunissen E H P, van den Heuvel M, Hansen M B, van Hest J C M. Chem. Soc. Rev., 2010, 39:3394.
[15] Yang Z H, Zhao X J. Int. J. Nanomed., 2011, 6:303.
[16] Ravichandran R, Venugopal J R, Sundarrajan S, Mukherjee S, Ramakrishna S. Biomaterials, 2012, 33:846.
[17] Cui H G, Cheetham A G, Pashuck E T, Stupp S I. J. Am. Chem. Soc., 2014, 136:12461.
[18] Pedersen C J. J. Am. Chem. Soc., 1967, 89:7017.
[19] Cram D J. J. Inclusion Phenom., 1988, 6:397.
[20] Lehn J M. J. Inclusion Phenom., 1988, 6:351.
[21] Sherrington D C, Taskinen K A. Chem. Soc. Rev., 2001, 30:83.
[22] Yu S J, Huang X, Miao L, Zhu J Y, Yin Y Z, Luo Q, Xu J Y, Shen J C, Liu J Q. Bioorg. Chem., 2010, 38:159.
[23] Whitesides G M, Grzybowski B. Science, 2002, 295:2418.
[24] Maeda Y, Makhlynets O V, Matsui H, Korendovych I V. Annu. Rev. Biomed. Eng., 2016, 18:311.
[25] Jin Q X, Zhang L, Cao H, Wang T Y, Zhu X F, Jiang J, Liu M H. Langmuir, 2011, 27:13847.
[26] Tena-Solsona M, Nanda J, Chotera A, Ashkenasy G, Escuder B. Chem. Eur. J., 2016, 22:6687.
[27] Huang Z P, Luo Q, Guan S W, Gao J X, Wang Y G, Zhang B, Wang L, Xu J Y, Dong Z Y, Liu J Q. Soft Matter, 2014, 10:9695.
[28] Omosun T O, Hsieh M C, Childers W S, Das D, Mehta A K, Anthony N R, Pan T, Grover M A, Berland K M, Lynn D G. Nat. Chem., 2017, 9:805.
[29] Rufo C M, Moroz Y S, Moroz O V, Stohr J, Smith T A, Hu X, DeGrado W F, Korendovych I V. Nat. Chem., 2014, 6:303.
[30] Lee M W, Wang T, Makhlynets O V, Wu Y B, Polizzi N F, Wu H F, Gosavi P M, Stohr J, Korendovych I V, DeGrado W F, Hong M. Proc. Natl. Acad. Sci.U.S.A., 2017, 114:6191.
[31] Singh N, Conte M P, Ulijn R V, Miravet J F, Escuder B. Chem. Commun., 2015, 51(67):13213.
[32] Guler M O, Stupp S I. J. Am. Chem. Soc., 2007, 129:12082.
[33] Zhang C Q, Xue X D, Luo Q, Li Y W, Yang K N, Zhuang X X, Jiang Y G, Zhang J C, Liu J Q, Zou G Z, Liang X J. ACS Nano, 2014, 8:11715.
[34] Landschulz W H, Johnson P F, McKnight S L. Science, 1988, 240:1759.
[35] Zastrow M L, Pecoraro V L. J. Am. Chem. Soc., 2013, 135:5895.
[36] Cangelosi V M, Deb A, Penner-Hahn J E, Pecoraro V L. Angew. Chem. Int. Ed., 2014, 53:7900.
[37] Burton A J, Thomson A R, Dawson W M, Brady R L, Woolfson D N. Nat. Chem., 2016, 8:837.
[38] Pochan D J, Schneider J P, Kretsinger J, Ozbas B, Rajagopal K, Haines L. J. Am. Chem. Soc., 2003, 125:11802.
[39] Micklitsch C M, Medina S H, Yucel T, Nagy-Smith K J, Pochan D J, Schneider J P. Macromolecules, 2015, 48:1281.
[40] Rughani R V, Schneider J P. MRS Bull., 2008, 33:530.
[41] Knerr P J, Branco M C, Nagarkar R, Pochan D J, Schneider J P. J. Mater. Chem., 2012, 22:1352.
[42] Micklitsch C M, Knerr P J, Branco M C, Nagarkar R, Pochan D J, Schneider J P. Angew. Chem. Int. Ed., 2011, 50:1577.
[43] Platt G, Chung C W, Searle M S. Chem. Commun., 2001,13(13):1162.
[44] Wang C, Sun Y, Wang J, Xu H, Lu J. R. Chem. Asian J., 2015, 10:1953.
[45] Rajagopal K, Lamm M S, Haines-Butterick L A, Pochan D J, Schneider J P. Biomacromolecules, 2009, 10:2619.
[46] Schneider J P, Pochan D J, Ozbas B, Rajagopal K, Pakstis L, Kretsinger J. J. Am. Chem. Soc., 2002, 124:15030.
[47] Tanaka T, Mizuno T, Fukui S, Hiroaki H, Oku J, Kanaori K, Tajima K, Shirakawa M. J. Am. Chem. Soc.,2004, 126:14023.
[48] Kharenko O A, Ogawa M Y. J. Inorg. Biochem., 2004, 98:1971.
[49] Cerasoli E, Sharpe B K, Woolfson D N. J. Am. Chem. Soc., 2005, 127:15008.
[50] Banwell E F, Abelardo E S, Adams D J, Birchall M A, Corrigan A, Donald A M, Kirkland M, Serpell L C, Butler M F, Woolfson D N. Nat. Mater., 2009, 8:596.
[51] Gao Y, Zhao F, Wang Q G, Zhang Y, Xu B. Chem. Soc. Rev., 2010, 39:3425.
[52] Valéry C, Deville-Foillard S, Lefebvre C, Taberner N, Legrand P, Meneau F, Meriadec C, Delvaux C, Bizien T, Kasotakis E, Lopez-Iglesias C, Gall A, Bressanelli S, Du M L, Paternostre M, Artzner F. Nat. Commun., 2015, 6:7771.
[53] Castelletto V, Hamley I W, Segarra-Maset M D, Gumbau C B, Miravet J F, Escuder B, Seitsonen J, Ruokolainen J. Biomacromolecules, 2014, 15:591.
[54] Wang J, Shao F, Li W, Yan J, Liu K, Tao P, Masuda O, Zhang A. Chem. Asian J., 2017, 12:497.
[55] Zastrow M L, Peacock A F, Stuckey J A, Pecoraro V L. Nat. Chem., 2011, 4:118.
[56] Der B S, Edwards D R, Kuhlman B. Biochemistry, 2012, 51:3933.
[57] Song W J, Tezcan F A. Science, 2014, 346:1525.
[58] Broo K S, Brive L, Ahlberg P, Baltzer A L. J. Am. Chem. Soc., 1997, 119:11362.
[59] Hiebler K, Lengyel Z, Castaneda C A, Makhlynets O V. Proteins, 2017, 85:1656.
[60] Sun Y, Zhao C, Gao N, Ren J, Qu X. Chem. Eur. J., 2017, 23(71):18146.
[61] Garcia A M, Kurbasic M, Kralj S, Melchionna M, Marchesan S. Chem. Commun., 2017, 53(58):8110.
[62] Huang Z P, Guan S W, Wang Y G, Shi G N, Cao L N, Gao Y Z, Dong Z Y, Xu J Y, Luo Q, Liu J Q. J. Mater. Chem. B, 2013, 1:2297.
[63] Zhang C Q, Shafi R, Lampel A, MacPherson D, Pappas C G, Narang V, Wang T, Maldarelli C, Ulijn R V. Angew. Chem. Int. Ed., 2017, 56:14511.
[1] Kelong Fan, Lizeng Gao, Hui Wei, Bing Jiang, Daji Wang, Ruofei Zhang, Jiuyang He, Xiangqin Meng, Zhuoran Wang, Huizhen Fan, Tao Wen, Demin Duan, Lei Chen, Wei Jiang, Yu Lu, Bing Jiang, Yonghua Wei, Wei Li, Ye Yuan, Haijiao Dong, Lu Zhang, Chaoyi Hong, Zixia Zhang, Miaomiao Cheng, Xin Geng, Tongyang Hou, Yaxin Hou, Jianru Li, Guoheng Tang, Yue Zhao, Hanqing Zhao, Shuai Zhang, Jiaying Xie, Zijun Zhou, Jinsong Ren, Xinglu Huang, Xingfa Gao, Minmin Liang, Yu Zhang, Haiyan Xu, Xiaogang Qu, Xiyun Yan. Nanozymes [J]. Progress in Chemistry, 2023, 35(1): 1-87.
[2] Minglong Lu, Xiaoyun Zhang, Fan Yang, Lian Wang, Yuqiao Wang. Surface/Interface Modulation in Oxygen Evolution Reaction [J]. Progress in Chemistry, 2022, 34(3): 547-556.
[3] Hong Li, Xiaodan Shi, Jieling Li. Self-Assembled Peptide Hydrogel for Biomedical Applications [J]. Progress in Chemistry, 2022, 34(3): 568-579.
[4] Zhao Jing, Wang Ziya, Mo Lixin, Meng Xiangyou, Li Luhai, Peng Zhengchun. Performance Enhancing Mechanism,Implementation and Practical Advantages of Microstructured Flexible Pressure Sensors [J]. Progress in Chemistry, 2022, 34(10): 2202-2221.
[5] Wei-Pin Huang, Ke-Feng Ren, Jian Ji. New Strategies for Regulating Polymer’s Surface Microstructure [J]. Progress in Chemistry, 2020, 32(10): 1494-1503.
[6] Shifang Yuan, Yi Yan. Homonuclear Bimetallic Complex Catalysts for Olefin Polymerization [J]. Progress in Chemistry, 2019, 31(12): 1737-1748.
[7] Dongya Bai, Junyao He, Bin Ouyang, Jin Huang, Pu Wang. Biocatalytic Asymmetric Synthesis of Chiral Aryl Alcohols [J]. Progress in Chemistry, 2017, 29(5): 491-501.
[8] Wenzhong Zhai, Yufeng He, Bin Wang, Yubing Xiong, Pengfei Song, Rongmin Wang. Fabrication and Applications of Polymeric Janus Particles [J]. Progress in Chemistry, 2017, 29(1): 127-136.
[9] Sun Jia, Wang Pu, Zhang Pengpeng, Huang Jin. Application of Glycerol in Microbial Biosynthesis and Biocatalysis [J]. Progress in Chemistry, 2016, 28(9): 1426-1434.
[10] Yang Lujiao, Zhang Ying, Cheng Xuan. Performance and Structure of Polymer Derived SiBCN Ceramics [J]. Progress in Chemistry, 2016, 28(2/3): 308-316.
[11] Zhao Yanan, Wang Mengfan, Qi Wei, Su Rongxin, He Zhimin. Supramolecular Artificial Enzyme Based on Assembling Peptide Gel [J]. Progress in Chemistry, 2016, 28(11): 1664-1671.
[12] Liu Xu, Wu Juntao, Huo Jiangbei, Meng Xiaoyu, Cui Lishan, Zhou Qiong. Effects of Conducting Channels Microstructure in Proton Exchange Membrane on the Performance of Fuel Cells [J]. Progress in Chemistry, 2015, 27(4): 395-403.
[13] Gong Jinsong, Li Heng, Lu Zhenming, Shi Jinsong, Xu Zhenghong. Recent Progress in the Application of Nitrilase in the Biocatalytic Synthesis of Pharmaceutical Intermediates [J]. Progress in Chemistry, 2015, 27(4): 448-458.
[14] Feng Xudong, Li Chun. The Improvement of Enzyme Properties and Its Catalytic Engineering Strategy [J]. Progress in Chemistry, 2015, 27(11): 1649-1657.
[15] Shen Gangyi, Yu Wanting, Liu Meirong, Cui Xun. Preparation and Application of Immobilized Enzyme Micro-Reactor [J]. Progress in Chemistry, 2013, 25(07): 1198-1207.