中文
Announcement
More
Progress in Chemistry 2018, Vol. 30 Issue (11): 1784-1802 DOI: 10.7536/PC180110 Previous Articles   

• Review •

Research of Anti-TB Active Compounds

Tianzhi Dai1,2, Dequn Sun1,2*   

  1. 1. Marine College, Shandong University at Weihai, Weihai 264209, China;
    2. College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621000, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No.81773560).
PDF ( 391 ) Cited
Export

EndNote

Ris

BibTeX

Tuberculosis (TB) is a slow-lethal disease caused by mycobacterium tuberculosis (MTB). Although the current incidence of tuberculosis is low in developed countries, it is still a high incidence and catastrophic infectious disease in numerous developing countries. Based on this situation, searching for new active compounds or modifying existing drug molecules has become a hot spot for the development of new anti-TB drugs. Currently, the compounds under research include quinolines, quinolones, imidazoles, benzothiazinones, oxazolidinones and natural products, among which quinoline compounds are still an important research target. The majority of these compounds have low micromolar levels in vitro anti-tuberculosis activity and are most likely effective against in vivo drug-susceptible or resistant strains. This paper elaborates the anti-tuberculosis compounds from 2014~2017, and reviews their research status with chemical structure characteristics, anti-tubercular activity, structure-activity relationship and safety. Research prospects in this filed are discussed.
Contents
1 Introduction
2 Quinoline compounds
2.1 Beidaquinoline and its derivatives
2.2 Bis-quinolines compounds
2.3 Quinoline-based fused ring derivatives
2.4 Adamantane-containing quinoline derivatives
2.5 Quinoline derivatives containing metal complexes
2.6 Quinoline-3-carboxylic acid and ester group derivatives
2.7 Isatin-quinoline derivatives
2.8 Quinoline carboxylic acid hydrazidesor amides
2.9 Containing azoles Quinoline compounds
2.10 Other quinoline derivatives
3 Quinolones
4 Imidazole derivatives
4.1 Imidazopyridine carboxamide derivatives
4.2 NHIO compounds
5 Benzothiazinones
6 Other compounds
6.1 Triazine compounds
6.2 Fluorobenzoxazinyl-oxazolidinones
6.31,2-bis(quinazolin-4-yl) naphthyridine(DQYD)
6.4 Diphenylindole and aryl sulfonamides
6.5 Imidazoline derivatives
6.6 Drug repurposing
7 Natural products
8 Conclusion and outlook

CLC Number: 

[1] Basso A, Previgliano I, Servadei F. East Mediterr Health J, 2009, 15:776.
[2] Ventola C L. Pharmacy and Therapeutics, 2015, 40:277.
[3] Bezos J, Casal C, Díez-Delgadoc I, Romero B, Liandris E, Álvarez J, Sevilla I A, de Juan L, Domínguez L, Gortázar C. Veterinary Immunology and Immunopathology, 2015, 167:185.
[4] Costa P, Amaro A, Botelho A, Inácio J, Baptista P V. Clinical Microbiology and Infection, 2010, 16:1464.
[5] Brooks J T, Kaplan J E, Holmes K K, Benson C, Pau A, Masur H. Clin. Infect. Dis., 2009, 48:609.
[6] Abdool Karim S S, Churchyard G J, Karim Q A, Lawn S D. Lancet, 2009, 374:921.
[7] Padayatchi N, Abdool Karim S S, Naidoo K, Grobler A, Friedland G. International Journal of Tuberculosis & Lung Disease the Official Journal of the International Union Against Tuberculosis & Lung Disease, 2014, 18:147.
[8] Bekker L G, Wood R. Clin. Infect. Dis., 2010, 50:208.
[9] Dholakia Y, Mistry N F, Tolani M P. Drug Future, 2015, 40:39.
[10] Parida S K, Axelssonrobertson R, Rao M V, Singh N, Master I, Lutckii A, Keshavjee S, Andersson J, Zumla A, Maeurer M. J. Intern. Med., 2015, 277:388.
[11] Yeimer O M. Indian J Tuberc, 2017, 64:235
[12] Choby B, Hunter P. FP Essentials, 2015, 429:22.
[13] Zumla A, Chakaya J, Centis R, D'ambrosio L, Mwaba P, Bates M, Kapata N, Nyirenda T, Chanda D, Mfinanga S. Lancet Respiratory Medicine, 2015, 3:220.
[14] Parida S, Axelsson-Robertson R, Rao M, Singh N, Master I, Lutckii A, Keshavjee S, Andersson J, Zumla A, Maeurer M. J. Intern. Med., 2015, 277:388.
[15] Palomino J C, Martin A. Future Microbiol., 2013, 8:1071.
[16] Singla R, Gupta S, Gupta R, Arora V K. International Journal of Tuberculosis & Lung Disease the Official Journal of the International Union Against Tuberculosis & Lung Disease, 2001, 5:559.
[17] Veziris N, Truffotpernot C, Aubry A, Jarlier V, Lounis N. Antimicrob. Agents Chemother., 2003, 47:3117.
[18] Pletz M W R, Roux A D, Roth A, Neumann K H, Mauch H, Lode H. Antimicrobial Agents and Chemotherapy. 2004, 48:780.
[19] Koh J J, Zou H, Mukherjee D, Lin S, Lim F, Tan J K, Tan D Z, Stocker B L, Timmer M S M, Corkran H M, Lakshminarayanan R, Tan D T H, Cao D, Beuerman R W, Dick T, Liu S. Eur. J. Med. Chem., 2016, 123:684.
[20] Avorn J. JAMA-Journal of the American Medical Association, 2013, 309:1349.
[21] Andries K, Verhasselt P, Guillemont J, Gohlmann H W H, Neefs J M, Winkler H, Van Gestel J, Timmerman P, Zhu M, Lee E, Williams P, De Chaffoy D, Huitric E, Hoffner S, Cambau E, Truffot-Pernot C, Lounis N, Jarlier V. Science, 2005, 307:223.
[22] Kundu S, Biukovic G, Gruber G, Dick T. Antimicrob Agents Chemother, 2016, 60:6977.
[23] Haagsma A C, Abdillahi-Ibrahim R, Wagner M J, Krab K, Vergauwen K, Guillemont J, Andries K, Lill H, Koul A, Bald D. Antimicrob. Agents Chemother., 2009, 53:1290.
[24] Kalia D, K. S A K, Meena G, Sethi K P, Sharma R, Trivedi P, Khan S R, Verma A S, Singh S, Sharma S, Roy K K, Kant R, Krishnan M Y, Singh B N, Sinha S, Chaturvedi V, Saxena A K, Dikshit D K. MedChemComm, 2015, 6:1554.
[25] Gupta S, Tyagi S, Bishai W R. Antimicrob Agents Chemother, 2015, 59:673.
[26] Tong A S T, Choi P J, Blaser A, Sutherland H S, Tsang S K Y, Guillemont J, Motte M, Cooper C B, Andries K, Van Den Broeck W, Franzblau S G, Upton A M, Denny W A, Palmer B D, Conole D. ACS Med. Chem. Lett., 2017, 8:1019.
[27] Subhedar D D, Shaikh M H, Nawale L, Sarkar D, Khedkar V M, Shingate B B. Bioorg. Med. Chem. Lett., 2017, 27:922.
[28] Hartkoorn R C, Chandler B, Owen A, Ward S A, Squire S B, Back D J, Khoo S H. Tuberculosis, 2007, 87:248.
[29] Wang S S, Eisenberg D. Protein Sci., 2003, 12:1097.
[30] White E L, Southworth K, Ross L, Cooley S, Gill R B, Sosa M I, Manouvakhova A, Rasmussen L, Goulding C, Eisenberg D, Fletcher T M. J. Biomol. Screen., 2007, 12:100.
[31] Tseng C H, Tung C W, Wu C H, Tzeng C C, Chen Y H, Hwang T L, Chen Y L. Molecules, 2017, 22:1001
[32] Muscia G C, Buldain G Y, Asís S E. Eur. J. Med. Chem., 2014, 73:243.
[33] Patel S R, Gangwal R, Sangamwar A T, Jain R. Eur. J. Med. Chem., 2014, 85:255.
[34] Patel S R, Gangwal R, Sangamwar A T, Jain R. Eur. J. Med. Chem., 2015, 93:511.
[35] Mylliemngap B J, Borthakur A, Ingale K, Karanam S, Velmurugan D, Bhattacharjee A. International Journal of Pharmaceutical Sciences & Research, 2014, 5:1345.
[36] Mandewale M C, Thorat B R, Yamgar R S. Der Pharma Chemica, 2015, 7:207.
[37] Mandewale M C, Thorat B, Shelke D, Yamgar R. Bioinorganic Chemistry and Applications, 2015, 2015:1
[38] Tanwar B, Kumar A, Yogeeswari P, Sriram D, Chakraborti A K. Bioorg. Med. Chem. Lett., 2016, 26:5960.
[39] Veerasamy R, Chigurupati S, Sivadasan S, Arumugam D S, Rajak H, Krishnan S K. Med. Chem. Res., 2015, 24:744.
[40] 杨旭云(Yang X Y)天津理工大学硕士论文(Master Dissertation of Tianjin University of Science and Technology), 2016.
[41] Makula A, Maddela S. Anti-Infective Agents, 2016, 14:53.
[42] Chander S, Ashok P, Cappoen D, Cos P, Murugesan S. Chem. Biol. Drug Des., 2016, 88:585.
[43] Pitta E, Rogacki M K, Balabon O, Huss S, Cunningham F, Lopez-Roman E M, Joossens J, Augustyns K, Ballell L, Bates R H, Van Der Veken P. J. Med. Chem., 2016, 59:6709.
[44] Jain P P, Degani M S, Raju A, Anantram A, Seervi M, Sathaye S, Ray M, Rajan M G R. Bioorg. Med. Chem. Lett., 2016, 26:645.
[45] Gohil J D, Patel H B, Patel M P. Indian Journal of Advances in Chemical Science, 2016, 4:102.
[46] Upadhayaya R S, Kulkarni G M, Vasireddy N R, Vandavasi J K, Dixit S S, Sharma V, Chattopadhyaya J. Bioorg. Med. Chem., 2009, 17:4681.
[47] Kos J, Zadrazilova I, Nevin E, Soral M, Gonec T, Kollar P, Oravec M, Coffey A, O'mahony J, Liptaj T, Kralova K, Jampilek J. Bioorg. Med. Chem., 2015, 23:4188.
[48] Medapi B, Renuka J, Saxena S, Sridevi J P, Medishetti R, Kulkarni P, Yogeeswari P, Sriram D. Bioorg. Med. Chem., 2015, 23:2062.
[49] Singh S, Roy K K, Khan S R, Kashyap V K, Sharma A, Jaiswal S, Sharma S K, Krishnan M Y, Chaturvedi V, Lal J, Sinha S, Dasgupta A, Srivastava R, Saxena A K. Bioorg. Med. Chem., 2015, 23:742.
[50] Lalloo U G, Ambaram A. Curr. HIV/AIDS Rep., 2010, 7:143.
[51] Migliori G B, Langendam M W, D'ambrosio L, Centis R, Blasi F, Huitric E, Manissero D, Van Der Werf M J. Eur. Respir. J., 2012, 40:814.
[52] Asthana C, Asif M. Biointerface Research in Applied Chemistry, 2014, 4:694.
[53] Suresh N, Nagesh H N, Renuka J, Rajput V, Sharma R, Khan I A, Kondapalli Venkata Gowri C S. Eur. J. Med. Chem., 2014, 71:324.
[54] Hong W D, Gibbons P D, Leung S C, Amewu R, Stocks P A, Stachulski A, Horta P, Cristiano M L S, Shone A E, Moss D, Ardrey A, Sharma R, Warman A J, Bedingfield P T P, Fisher N E, Aljayyoussi G, Mead S, Caws M, Berry N G, Ward S A, Biagini G A, O'neill P M, Nixon G L. J. Med. Chem., 2017, 60:3703.
[55] Abdelrahman M A, Salama I, Gomaa M S, Elaasser M M, Abdelaziz M M, Soliman D H. Eur. J. Med. Chem., 2017, 138:698.
[56] Jose G, Suresha Kumara T H, Nagendrappa G, Sowmya H B, Sriram D, Yogeeswari P, Sridevi J P, Guru Row T N, Hosamani A A, Sujan Ganapathy P S, Chandrika N, Narendra L V. Eur. J. Med. Chem., 2015, 89:616.
[57] Jadhav B, Kenny R, Nivid Y, Mandewale M, Yamgar R. Open Journal of Medicinal Chemistry, 2016, 06:59.
[58] Kour G, Singh P P, Bhagat A, Ahmed Z. Eur. J. Pharm. Sci., 2017, 106:71.
[59] Munagala G, Yempalla K R, Singh S, Sharma S, Kalia N P, Rajput V S, Kumar S, Sawant S D, Khan I A, Vishwakarma R A, Singh P P. Org. Biomol. Chem., 2015, 13:3610.
[60] Peng C T, Gao C, Wang N Y, You X Y, Zhang L D, Zhu Y X, Xv Y, Zuo W Q, Ran K, Deng H X, Lei Q, Xiao K J, Yu L T. Bioorg. Med. Chem. Lett., 2015, 25:1373.
[61] Zhang R, Lv K, Wang B, Li L, Wang B, Liu M, Guo H, Wang A, Lu Y. RSC Advances, 2017, 7:1480.
[62] Makarov V, Neres J, Hartkoorn R C, Ryabova O B, Kazakova E, Sarkan M, Huszar S, Piton J, Kolly G S, Vocat A, Conroy T M, Mikusova K, Cole S T. Antimicrob Agents Chemother, 2015, 59:4446.
[63] Tiwari R, Miller P A, Chiarelli L R, Mori G, Sarkan M, Centarova I, Cho S, Mikusova K, Franzblau S G, Oliver A G, Miller M J. ACS Med. Chem. Lett., 2016, 7:266.
[64] Chandran M, Renuka J, Sridevi J P, Pedgaonkar G S, Asmitha V, Yogeeswari P, Sriram D. Int J Mycobacteriol, 2015, 4:104.
[65] Lv K, You X, Wang B, Wei Z, Chai Y, Wang B, Wang A, Huang G, Liu M, Lu Y. ACS Med. Chem. Lett., 2017, 8:636.
[66] Patel P K, Patel R V, Mahajan D H, Parikh P A, Mehta G N, Pannecouque C, De Clercq E, Chikhalia K H. J. Heterocycl. Chem., 2014, 51:1641.
[67] Zhao H, Lu Y, Sheng L, Yuan Z, Wang B, Wang W, Li Y, Ma C, Wang X, Zhang D, Huang H. ACS Med. Chem. Lett., 2017, 8:533.
[68] Tang B, Wei M, Niu Q, Huang Y, Ru S, Liu X, Shen L, Fang Q. Biomed. Res. Int., 2017, 2017:5791781.
[69] Naik M, Ghorpade S, Jena L K, Gorai G, Narayan A, Guptha S, Sharma S, Dinesh N, Kaur P, Nandishaiah R, Bhat J, Balakrishnan G, Humnabadkar V, Ramachandran V, Naviri L K, Khadtare P, Panda M, Iyer P S, Chatterji M. ACS Med. Chem. Lett., 2014, 5:1005.
[70] Harris K K, Fay A, Yan H G, Kunwar P, Socci N D, Pottabathini N, Juventhala R R, Djaballah H, Glickman M S. ACS Chem. Biol., 2014, 9:2572.
[71] Yu M, Nagalingam G, Ellis S, Martinez E, Sintchenko V, Spain M, Rutledge P J, Todd M H, Triccas J A. J. Med. Chem., 2016, 59:5917.
[72] Gold B, Smith R, Nguyen Q, Roberts J, Ling Y, Lopez Quezada L, Somersan S, Warrier T, Little D, Pingle M, Zhang D, Ballinger E, Zimmerman M, Dartois V, Hanson P, Mitscher L A, Porubsky P, Rogers S, Schoenen F J, Nathan C, Aube J. J. Med. Chem., 2016, 59:6027.
[73] Salunke S B, Azad A K, Kapuriya N P, Balada-Llasat J M, Pancholi P, Schlesinger L S, Chen C S. Bioorg. Med. Chem., 2015, 23:1935.
[74] Pule C M, Sampson S L, Warren R M, Black P A, Van Helden P D, Victor T C, Louw G E. J. Antimicrob. Chemother., 2016, 71:17.
[75] De Keijzer J, Mulder A, De Haas P E, De Ru A H, Heerkens E M, Amaral L, Van Soolingen D, Van Veelen P A. J. Proteome Res., 2016, 15:1776.
[76] Pieroni M, Machado D, Azzali E, Santos Costa S, Couto I, Costantino G, Viveiros M. J. Med. Chem., 2015, 58:5842.
[77] Patel K, Tyagi C, Goyal S, Jamal S, Wahi D, Jain R, Bharadvaja N, Grover A. Comput. Biol. Chem., 2015, 59 Pt A:37.
[78] Severino V G P, Monteiro A F, Silva M F D G F D, Lucarini R, Martins C H G. Quim. Nova, 2014, 38:42.
[79] Li D G, Ren Z X. Braz J Med Biol Res, 2017, 50:e6188.
[80] Shukla R, Shukla H, Sonkar A, Pandey T, Tripathi T. J. Biomol. Struct. Dyn., 2017, 9:2045.
[1] Jiangjiexing Wu, Hui Wei. Efficient Design Strategies for Nanozymes [J]. Progress in Chemistry, 2021, 33(1): 42-51.
[2] Xin Yan, Yi-Xian Li, Yue-Mei Jia, Chu-Yi Yu. Glycosylated Iminosugars: Isolation, Synthesis and Biological Activities [J]. Progress in Chemistry, 2019, 31(11): 1472-1508.
[3] Yixian Li, Yuemei Jia, Chuyi Yu. Synthesis and Glycosidase Inhibitory Activities of Fluorinated Iminosugars [J]. Progress in Chemistry, 2018, 30(5): 586-600.
[4] Benzhan Zhu, Linna Xie, Chen Shen, Huiying Gao, Liya Zhu, Li Mao. Chemiluminescence Generation from Haloaromatic Pollutants:Structure-Activity Relationship, Molecular Mechanism and Potential Applications [J]. Progress in Chemistry, 2017, 29(9): 930-942.
[5] Hu Daihua, Chen Wang, Wang Yongji. Synthesis and Structure-Activity Relationship of Active Vitamin D3 Analogues [J]. Progress in Chemistry, 2016, 28(6): 839-859.
[6] Guo Jian, He Yun, Ye Xin-Shan. Design and Discovery of Sialyltransferase Inhibitors [J]. Progress in Chemistry, 2016, 28(11): 1712-1720.
[7] Zhao Lijun, Lei Ming. Computational Chemical Studies on Transthyretin [J]. Progress in Chemistry, 2014, 26(01): 193-202.
[8] Zhao Yongsheng, Zhang Xiangping, Zhao Jihong, Zhang Hongzhong, Kang Xuejing, Dong Feng. Research of QSPR/QSAR for Ionic Liquids [J]. Progress in Chemistry, 2012, 24(07): 1236-1244.
[9] . Structures and Mechanism of Action for Complex Ⅲ Inhibiting-Fungicides [J]. Progress in Chemistry, 2010, 22(09): 1852-1868.
[10] Li Zheng Li Yuanchao. Structural Diversity and Structure-Activity Relationship —— New Drug Research and Development of Tripterygium wilfordii Hook.f. [J]. Progress in Chemistry, 2009, 21(12): 2483-2491.
[11] Liu Xiaobo Li Yuyan You Qidong. Advances in the Research of β-Ketoacyl-ACP Synthase Ⅲ(FabH) Inhibitors [J]. Progress in Chemistry, 2009, 21(09): 1930-1938.
[12] Zheng Yansheng Mo Qian Liu Zhaoming. The Studies of QSPR/QSAR for Ionic Liquids [J]. Progress in Chemistry, 2009, 21(09): 1772-1781.
[13] Liu Huachen Dong Aijun Gao Chunmei Jiang Yuyang. Structure Modification of Resveratrol and Pharmacological Activity [J]. Progress in Chemistry, 2009, 21(0708): 1500-1506.
[14] . QSAR Study of Endocrine Disrupting Chemicals [J]. Progress in Chemistry, 2009, 21(0203): 335-339.
[15] Yang Haipeng|Chen Shiguo|Li Chunhui|Chen Dongcheng|Ge Zaochuan. Nanomaterials Based Electrochemical Biosensors [J]. Progress in Chemistry, 2009, 21(01): 210-216.
Viewed
Full text


Abstract

Research of Anti-TB Active Compounds