中文
Announcement
More
Progress in Chemistry 2018, Vol. 30 Issue (11): 1646-1659 DOI: 10.7536/PC180109 Previous Articles   Next Articles

• Review •

Solution-Based Preparation Techniques for Two-Dimensional Molybdenum Sulfide Nanosheet and Application of Its Composite Materials in Photocatalysis and Electrocatalysis

Meiyao Tang1,2, Yanyan Wang1,2*, He Shen3,4, Guangbo Che1,3*   

  1. 1. Key Laboratory of Preparation and Application of Environmental Friendly Materials, Ministry of Education, Jilin Normal University, Changchun 130103, China;
    2. College of Chemistry, Jilin Normal University, Siping 136000, China;
    3. Key Laboratory of Functional Materials Physics and Chemistry, Ministry of Education, Jilin Normal University, Changchun 130103, China;
    4. College of Physics, Jilin Normal University, Siping 136000, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No.21576112,61705078,61704065,11504132) and the Natural Science Foundation Project of Jilin Province (No.20180623042TC, 20180520179JH).
PDF ( 1889 ) Cited
Export

EndNote

Ris

BibTeX

As a member of two-dimensional (2D) transition metal chalcogenide compounds (TMDs), molybdenum sulfide (MoS2) has become one of the most widely studied semiconductors because of its inherent unique physical and chemical properties as well as its abundance in nature. Due to special lamellar structure and adjustable band gap, 2D MoS2 have received considerable attention in the fields of catalysis, optoelectronic devices, sensing and energy storage and conversion. Solution-based techniques for preparation of 2D MoS2 nanosheet,such as liquid phase exfoliation methods and wet chemical synthesis methods,are promising for large-scale and high-yield preparation. More importantly, 2D MoS2 nanosheets obtained by solution-based method can also be used as templates or carriers to fabricate functional composites to further enhance their performance in related applications. In this review, the recent progress of solution-processed MoS2 nanosheets is presented, with the emphasis on their versatile synthetic strategies, hybridization and their application in photocatalysis and electrocatalysis. Finally, the challenges and opportunities in this research area are proposed.
Contents
1 Introduction
2 Solution-based techniques for preparation of 2D MoS2 nanosheets
2.1 Liquid phase exfoliation method
2.2 Wet chemical synthesis methods
3 2D MoS2 nanosheet-based composites
3.1 Composites of 2D MoS2 nanosheets and carbon materials
3.2 Composites of 2D MoS2 nanosheets and metals or metal oxides
3.3 Composites of 2D MoS2 nanosheets and organic or bio-materials
3.4 Hybrids of 2D MoS2 nanosheets and other functional materials
4 Applications of 2D MoS2 nanosheet-based composites
4.1 Photocatalysis
4.2 Electrocatalysis
5 Conclusion

CLC Number: 

[1] Tan C L, Liu Z D, Huang W, Zhang H. Chem. Soc. Rev., 2015, 44:2615.
[2] Huang X, Tan C, Yin Z, Zhang H. Adv. Mater., 2014, 26:2185.
[3] Chen Y, Tan C, Zhang H, Wang L. Chem. Soc. Rev., 2015, 44:2681.
[4] Xu M, Liang T, Shi M H. Chem. Soc. Rev., 2013, 113:3766.
[5] Zhang H. ACS Nano, 2015, 9:9451.
[6] Tan C, Zhang H. J. Am. Chem. Soc., 2015, 137:12162.
[7] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S. Nature Nanotech., 2012, 7:699.
[8] Chhowalla M, Shin H S, Eda G, Li L J, Loh K P, Zhang H. Nature Nanotech., 2013, 5:263.
[9] Nicolosi V, Chhowalla M, Kanatzidis M G, Strano M S, Coleman J N. Science, 2013, 340:1226419.
[10] Tan C, Zhang H. Chem. Soc. Rev., 2015, 44:2713-2731.
[11] Zhang Y J, Onga M, Qin F, Sh W, Zak A, Tenne R, Smet J, Iwasa Y. Mater., 2018, 5(3):035002.
[12] Iqbal M Z, Qureshi N A, Hussain G. J. Magn. Magn. Mater., 2018, 457.
[13] Hu W, Yang J L. J. Mater. Chem., 2017, 5(47):12289.
[14] Noori Y J, Cao Y M, Roberts J, Woodhead C, Bernardo-Gavito R, Tovee P, Young R J. ACS Photonics, 2016, 3(12):2515.
[15] Mak K F, Lee C, Hone J, Shan J, Heinz T F. Phys. Rev. Lett., 2010, 105:4.
[16] Li H, Wu J, Yin Z, Zhang H. Acc. Chem. Res., 2014, 47:1067.
[17] Radisavljevic B, Radenovic A. Nature Nanotech., 2011, 6:147.
[18] Li H, Qi X, Wu J, Zeng Z, Wei J, Zhang H. ACS Nano, 2013, 7:2842.
[19] Splendiani A, Sun L, Zhang Y B, Li T S, Kim J, Chim C Y, Galli G, Wang F. Nano Lett., 2010, 10:1271.
[20] Li H, Lu G, Yin Z, He Q, Li H, Zhang Q, Zhang H. Small, 2012, 8:682.
[21] Wang X W, Wu P Y. ACS Appl. Mater. Inter., 2018, 135.
[22] Lin.X Y, Wang J. J. Mater. Sci-Mater. El., 2018, 29(6):4658.
[23] Baby M, Kumar K R. J. Mater. Sci-Mater. El., 2018, 29(6):4658.
[24] Wu T, Zhang H. Angew. Chem. Int. Edit., 2015, 54:4432.
[25] Yin Z, Li H, Li H, Jiang L, Shi Y, Sun Y, Lu G, Zhang Q, Chen X, Zhang H. ACS Nano, 2012, 6:74.
[26] Lopez-Sanchez O, Lembke D, Kayci M. Radenovic A, Kis A. Nature Nanotech., 2013, 8:497.
[27] Liu J, Zeng Z, Cao X, Lu G, Wang L H, Fan Q L, Huang W, Zhang H. Small, 2012, 8:3517.
[28] Zeng Z, Yin Z, Huang X, Li H, He Q, Lu G, Boey F, Zhang H. Angew. Chem. Int. Edit., 2011, 50:11093.
[29] Li H, Yin Z, He Q, Li H, Huang X, Lu G, Fam D W H, Tok A I Y, Zhang Q, Zhang H. Small, 2012, 8:63.
[30] Zhu C, Zeng Z, Li H, Li F, Fan C, Zhang H. J. Am. Chem. Soc., 2013, 135:5998.
[31] Huang X, Zeng Z, Bao S, Wang M, Qi X, Fan Z, Zhang H. Nat. Commun., 2013, 4:1444.
[32] Yin Z, Chen B, Bosman M, Cao X, Chen J, Zheng B, Zhang H. Small, 2014, 10:3537.
[33] Yu Y F, Huang S Y, Li Y P, Steinmann S N, Yang W T, Cao L Y. Nano Lett., 2014, 14:553.
[34] Xie J F, Zhang J J, Li S, Grote F, Zhang X D, Zhang H, Wang R X, Lei Y, Pan B C, Xie Y. J. Am. Chem. Soc., 2013, 135:17881.
[35] Yan Y, Xia B, Xu Z, Wang X. ACS Catal., 2014, 4:1693.
[36] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. P. Natl. Acad. Sci. U.S.A., 2005, 102:10451.
[37] Zhao Y, Luo X, Li H, Zhang J, Araujo P T, Gan C K, Wu J, Zhang H, Quek S Y, Dresselhaus M S, Xiong Q H. Nano Lett., 2013, 13:1007.
[38] Zeng H L, Dai J F, Yao W, Xiao D, Cui X D. Nature Nanotech., 2012, 7:490.
[39] Lee H S, Min S W, Chang Y G, Park M K, Nam T, Kim H, Kim J H, Ryu S, Im S. Nano Lett., 2012, 12:3695.
[40] Liu K K, Zhang W J, Lee Y H, Lin Y C, Chang M T, Su C, Chang C S, Li H, Shi Y M, Zhang H, Lai C S, Li L J. Nano Lett., 2012, 12:1538.
[41] Zhan Y, Liu Z, Najmaei S, Ajayan P M, Lou J. Small, 2012, 8:966.
[42] Shi Y, Zhou W, Lu A Y, Fang W J, Lee Y H, Hsu A L, Kim S M, Kim K K, Yang H Y, Li L J, Idrobo J C, Kong J. Nano Lett., 2012, 12:2784.
[43] Eda G, Fujita T, Yamaguchi H, Voiry D, Chen M, Chhowalla M. ACS Nano, 2012, 6:7311.
[44] Eda G, Yamaguchi H, Voiry D, Fujita T, Chen M W, Chhowalla M. Nano Lett., 2011, 11:5111.
[45] Cunningham G, Lotya M, Cucinotta C S, Sanvito S, Bergin S D, Menzel R, Shaffer M S P, Coleman J N. ACS Nano, 2012, 6:3468.
[46] Zhang X, Lai Z, Tan C, Hua Z. Angew. Chem. Int. Edit., 2016, 47:8816.
[47] Matte H, Gomathi A, Manna A K, Late D J, Datta R, Pati S K, Rao C N R. Angew. Chem., 2010, 122:4153.
[48] Wang P, Sun H, Ji Y, Li W, Wang X. Adv. Mater., 2014, 26:964.
[49] Ciesielski A, Samori P. Chem. Soc. Rev., 2014, 43:381.
[50] Kim J, Kwon S, Cho D H, Kang B, Kwon H, Kim Y, Park S O, Jung G Y, Shin E, Kim W G, Lee H, Ryu G H, Choi M, Kim T H, Oh J, Park S, Kwak S K, Yoon S W, Byun D, Lee Z, C. Lee. Nat. Commun., 2015, 6:8294.
[51] Coleman J N, Lotya M, O'Neill A, Bergin S D, King P J, Khan U. et al. Science, 2011, 331:568.
[52] Cunningham G, Lotya M, Cucinotta C S, Sanvito S, Bergin S D, Menzel R. ACS Nano, 2012, 6:3468.
[53] Coleman J N, O'Neill M Lotya, Bergin A S D, King P J, Khan U, Young K, Gaucher A, De S, Smith R J, Shvets I V, Arora S K, Stanton G, Kim H Y, Lee K, Kim G T, Duesberg G S, Hallam T, Boland J J, Wang J J, Donegan J F, Grunlan J C, Moriarty G, Shmeliov A, Nicholls R J, Perkins J M, Grieveson E M, Theuwissen K, McComb D W, Nellist P D, Nicolosi V. Science, 2011, 331:568.
[54] O'Neill A, Khan U, Coleman J N. Chem. Mater.,2012, 24:2414.
[55] Sun X, Deng H, Zhu W, Zhi Y, Wu C Z, Xie Y. Angew. Chem. Int. Edit., 2016, 55:1704.
[56] Zhou K G, Mao N N, Wang H X, Peng Y, Zhang H L. Angew. Chem. Int. Edit., 2011, 50:10839.
[57] Jawaid A, Nepal D, Park K, Jespersen M, Qualley A, MirauP, DrummyL F, VaiaR A. Chem. Mater., 2016, 28(1):337.
[58] Grayfer E D, KozlovaM N, Fedorov V E. Adv. Colloid Interface Sci., 2017, 245:40.
[59] Zhou K G, Mao N N, Wang H X, Peng Y, Zhang H L. Angew Chem. Int. Ed., 2011, 50:10839.
[60] Shen J F, Wu J J, Wang M, Dong P, Xu J X, Li X G, Zhang X, Yuan J H, Wang X F, Ye M X, Robert V, Lou J, Ajayan P M. Small, 2016, 12(20):2741.
[61] Cunningham G, Lotya M, Cucinotta C S, Sanvito S, Bergin S D, Menzel R, Shaffer M S P, Coleman J N. ACS Nano, 2012, 6:3468.
[62] Zhang S L, Jung H, Huh J S, Yu J B, Yang W C. J. Am. Chem. Soc., 2014, 14:8518.
[63] Dong L, Lin S, Yang L, Zhang J, Yang C, Yang D, Lu H. Chem. Commun., 2014, 50:15936.
[64] Halim U, Zheng C R, Chen Y, Lin Z, Jiang S, Cheng R, Huang Y, Duan X. Nat. Commun., 2013, 4:2213.
[65] Smith R J, King P J, Lotya M, Wirtz C, Khan U, De S, O'Neill A, Duesberg G S, Grunlan J C, Moriarty G, Chen J, Wang J, Minett A I, Nicolosi V, Coleman J N. Adv. Mater., 2011, 23:3944.
[66] Mao B, Yuan Y, Shao Y, Yang B, Xiao Z, Huang J. J. Comput. Theor. Nanosci., 2014, 6, 685.
[67] Guardia L, Paredes J I, Rozada R, Villar-Rodil S. RSC Adv., 2014, 4:14115.
[68] Guan G, Zhang S, Liu S, Cai Y, Low M, Teng C P, Phang I Y, Cheng Y, Duei K L, Srinivasan B M, Zheng Y, Zhang Y W, Han M Y. J. Am. Chem. Soc., 2015, 137:6152.
[69] Yeon C, Yun S J, Yang J, Youn D H, Wook J. LimSmall, 2018, 14(2):1702747.
[70] Li J, Yu K, Tan Y, Fu H, Zhang Q, Cong W, Song C. Dalton Trans., 2014, 43:13136.
[71] Zheng J, Zhang H, Dong S, Liu Y, Tai Nai C, Suk Shin H, Young Jeong H, Liu B, Ping Loh K. Nat. Commum., 2014, 5, 2995.
[72] Niu L, Li K, Zhen H, Chui Y S, Zhang W, Yan F, Zheng Z. Small, 2014, 10:4651.
[73] Bang G S, Nam K W, Kim J Y, Shin J, Choi J W, Choi S Y. ACS Appl. Mater. Inter., 2014, 6:7084.
[74] Tan S M, Sofer Z, Luxa J, Pumera M. ACS Catalysis, 2016, 6(7):4594.
[75] Yao Y G, Tolentino L, Yang Z Z, Song X J, Zhang W, Chen Y S, Wong C P. Adv. Funct. Mater., 2013, 23:3577.
[76] Wu J Y, Lin M N, Wang L D, Zhang T. J. Nanomater, 2014, 852735.
[77] Yao Y, Lin Z, Li Z, Song X, Moon K S, Wong C P. J. Mater. Chem., 2012, 22:13494.
[78] Van Thanh D, Pan C C, Chu C W, Wei K H. RSC Adv., 2014, 4:15586.
[79] Yu L, Xu F, Xue B, Luo Z, Zhang Q, Bao B, Su S, Weng L, Huang W, Wang L. Nanoscale, 2014, 6:5762.
[80] Liu Y L, Zhong Q H, Chen K Q, Zhou J, Yang X, Chen W. J. Mater. Sci-Mater. El., 2017, 28(18):13633.
[81] Altavilla C, Sarno M, Ciambelli P. Chem. Mater., 2011, 23, 3879.
[82] Shi Y, Huang J K, Jin L, Hsu Y. T, Yu S F, Li L J, Yang H Y. Sci. Rep., 2013, 3:1839.
[83] Bessonov A A, Kirikova M N, Petukhov D I, Allen M, Ryh'nen T, Bailey M J A. Nature Mater., 2015, 14:199.
[84] Yun J M, Noh Y J, Lee C H, Na S I, Lee S, Jo S M, Joh H I, Kim D Y. Small, 2014, 10:2319.
[85] Wang L, Huang Z C, Wang R, Liu Y B, Qian C, Wu J, Liu J W. ACS Appl. Mater. Inter., 2018, 10:4409.
[86] Pang P F, Teng X, Chen M, Zhang Y L, Wang H B, Yang C, Yang W R, Barrow C J. Sensor. Actuat. B-Chem., 2018, 266:400.
[87] Burman D, Santra S, Pramanik P, Guha P K. Nanotechnology, 2018, 11:115504.
[88] Solanki S, Soni A, Pandey M K, Biradar A, Sumana G. ACS Appl. Mater. Inter., 2018, 10(3):3020.
[89] Li M J, Zheng Y N, Liang W B, Yuan, R, Chai Y Q. ACS Appl. Mater. Inter., 2017, 9(48):42111.
[90] Zhou W J, Yin Z Y, Du Y P, Huang X, Zeng Z Y, Fan Z X, Liu H, Wang J Y, Zhang H. Small, 2013, 9:140.
[91] Xu X, Fan Z, Ding S, Yu D, Du Y. Nanoscale, 2014, 6:5245.
[92] Chen Y, Song B, Tang X, Lu L, Xue J. Small, 2014, 10:1536.
[93] Chen Y, Lu J, Wen S, Lu L, Xue J. J. Am. Chem. Soc., 2014, 2:17857.
[94] Huang Y P, Miao Y E, Zhang L S, Tjiu W W, Pan J S. Nanoscale, 2014, 6:10673.
[95] Yin Y, Zhang X, Cai Y Q, Chen J Z, Wong J I, Tay Y Y, Chai J W, Wu J M T, Zeng Z Y, Zheng B, Yang H Y, Zhang H. Angew. Chem. Int. Edit., 2014, 53:12560.
[96] Qin P, Fang G, Ke W, Cheng F, Zheng Q, Wan J, Lei H, Zhao X. J. Am. Chem. Soc., 2014, 2:2742.
[97] Jeffery A, Nethravathi C, Rajamathi M. J. Phys. Chem. C, 2014, 118:1386.
[98] Chen B, MengY H, Sha J W, Zhong C, Hua W B, Zhao N Q. Nanoscale, 2018, 10(1):34.
[99] Rahmanian E, Malekfar R, Pumera M. Chem.-Eur. J., 2018, 24(1):18.
[100] Withers F, Yang H, Britnell L, Rooney A P, Lewis E, Felten A, Woods C R, Sanchez Roma-guera V, Georgiou T, Eckmann A, Kim Y J, Yeates S G, Haigh S J, Geim A K, Novoselov K S, Casiraghi C. Nano Lett., 2014, 14:3987.
[101] Chen J, Wu X J, Yin L, Li B, Hong X, Fan Z, Chen B, Xue C, Zhang H. Angew. Chem. Int. Edit., 2015, 54:1210.
[102] Peng W C, Li Y, Zhang F B, Zhang G L, Fan X B. Ind. Eng. Chem. Res., 2017, 56(16):4611.
[103] Zheng X, Xu J, Yan K, Wang H, Wang Z, Yang S. Chem. Mater., 2014, 26:2344.
[104] David L, Bhandavat R, Singh G. ACS Nano, 2014, 8:1759.
[105] Sun G, Liu J, Zhang X, Wang X, Li H, Yu Y, Huang W, Zhang H, Chen P. Angew. Chem., 2014, 53:12576.
[106] Zhou X, Wan L J, Guo Y G. Chem. Commun., 2013, 49:1838.
[107] Tai S Y, Liu C J, Chou S W, Chien F S S, Lin J Y, Lin T W. J. Mater. Chem., 2012, 22:24753.
[108] Chen Y, Sun H, Peng W. Nano Mater., 2017, 7(3):62.
[109] Park K S, Ni Z, Cote A P, Choi J Y, Huang R D, Uribe-Romo F J, Chae H K, O'Keeffe M, Yaghi O M.P. Natl. Acad. Sci. U.S.A.,2006, 103:10186.
[110] Lu G, Hupp J T. J. Am. Chem. Soc., 2010, 132:7832.
[111] Shen L, Luo M, Liu Y, Liang R, Jing F, Wu L. Appl. Catal. B, 2015, 166/167:445.
[112] Berntsen N, Gutjahr T, Loeffler L, Gomm J R, Seshadri R, Tremel W. Chem. Mater., 2003, 15:4498.
[113] Hou Y, Wen Z, Cui S, Guo X, Chen J. Adv. Mater., 2013, 25:6291.
[114] Xiang Q, Yu J, Jaroniec M. J. Am. Chem. Soc., 2012, 134:6575.
[115] Khan M, Yousaf A B, Chen M, Wei C S, Wu X, Huang N D, Qi Z M, Li L B. Nano Research, 2016, 9(3):837.
[116] Ravikumar C H, Nair G V, Muralikrishna S, Nagaraju D H, Balakrishna R G. Mater. Lett., 2018, 220:133.
[117] Ding S, Chen J S, Lou X W. Chemistry-Eur. J., 2011, 17:13142.
[118] Shi Y, Wang Y, Wong J I, Tan A Y S, Hsu C L, Li L J, Lu Y C, Yang H Y. Sci. Rep., 2013, 3:2169.
[119] Zhou F, Xin S, Liang H W, Song L T, Yu S H. Angew. Chem. Int. Edit., 2014, 53:11552.
[120] Wang C, Wan W, Huang Y, Chen J, Zhou H H, Zhang X X. Nanoscale, 2014, 6:5351.
[121] Weng Q, Wang X, Wang X, Zhang C, Jiang X, Bando Y, Golberg D. J. Mater. Chem. A, 2015, 3:3097.
[122] Voiry D, Goswami A, Kappera R, Silva C D C E, Kaplan D, Fujita T, Chen M, Asefa T, Chhowalla M. Nature Chem., 2015, 7:45.
[123] Chou S S, De M, Kim J, Byun S, Dykstra C, Yu J, Huang J, Dravid V P. J. Am. Chem. Soc., 2013, 135:4584.
[124] (a)Chang K, Chen W. ACS Nano, 2011, 5, 4720;(b)Backes C, Berner N C, Chen X, Lafargue P, LaPlace P, Freeley M, Duesberg G S, Coleman J N, McDonald A R. Angew. Chem. Int. Edit., 2015, 54:2638.
[125] Chang K, Mei Z W, Wang T, Kang Q, Ouyang S X, Ye J H. ACS Nano, 2014, 7:7078.
[126] Pan L, Liu Y T, Xie X M, Zhu X D. Chem.-Asian J., 2014, 9:1519.
[127] Sun G, Zhang X, Lin R, Yang J, Zhang H, Chen P. Angew. Chem. Int. Ed., 2015, 54, 4651.
[128] Sun H, Chao J, Zuo X, Su S, Liu X, Yuwen L, Fan C, Wang L. RSC Adv., 2014, 4:27625.
[129] Kim J, Byun S, Smith A J, Yu J. J. Phys. Chem.Lett., 2013, 4:1227.
[130] Bai S, Wang L, Chen X, Du J, Xiong Y. Nano Res., 2015, 8:175.
[131] Laursen A B, Kegnaes S, Dahl S. Energy & Environ. Sci., 2012, 5:5577.
[132] Ding Q, Meng F, English C R, Caban-Acevedo M, Shearer M J, Liang D, Daniel A S, Hamers R J, Jin S, J. Am. Chem. Soc., 2014, 136:8504.
[133] Zhang W, Xiao X, Li Y, Zeng X, Zheng L, Wan C, Appl. Surf. Sci., 2016, 389:496.
[134] Yang X, Huang H, Kubota M, He Z, Kobayashi N, Zhou X, Jin B, Luo J. Mater. Res. Bull., 2016, 76:79.
[135] Tan C, Qi X, Liu Z, Zhao F, Li H, Huang X, Shi L, Zheng B, Zhang X, Xie L, Tang Z, Huang W, Zhang H, J. Am. Chem. Soc., 2015, 137:1565.
[136] Schornbaum J, Winter B, Schießl S P, Gannott F, Katsukis G, Guldi D M, Spiecker E, Zaumseil J. Adv. Funct. Mater., 2014, 24:5798.
[137] Wang R T, Jin D D, Zhang Y B, Wang S J, Lang J W, Yan X B, Zhang L. J. Mater. Chem. A, 2017, 5(1):292.
[138] Lukowski M A, Daniel A S, Meng F, Forticaux A, Li L, Jin S. J. Am. Chem. Soc., 2013, 135:10274.
[139] Wang Z, Mi B. Environ. Sci. Technol., 2017, 51(15):8229.
[140] Xiang Q J, Yu J G, Jaroniec M. J. Am. Chem. Soc., 2012, 15:6575.
[141] Pramoda K, Kaur M, Gupta U, Rao C N R. Dalton Trans., 2016, 45(35):13810.
[142] Song H J, You S, Jia X H,.Jin Y. Ceram. Int., 2015, 41:13896.
[143] Yu Y, Huang S Y, Li Y, Steinmann S N, Yang W, Cao L L. Nano Lett., 2014, 14:553.
[144] Xie J F, Zhang H, Li S, Wang R X, Sun X, Zhou M, Zhou J F, Lou X W, Xie Y. Adv. Mater., 2013, 25:5807.
[145] Zhai C, Zhu M, Bin D, Ren F, Wang C, Yang P, Du Y. J. Power Sources, 2015, 275:483.
[146] Wang H, Lu Z, Xu S, Kong D, Cha J J, Zheng G, Hsu P C, Yan K, Bradshaw D, Prinz F B, Cui Y. P. Natl. Acad. Sci.U.S.A., 2013, 110:19701.
[147] Tang Q, Jiang D E, ACS Catal., 2016, 6:4953.
[148] Kibsgaard J, Chen Z, Reinecke B N, Jaramillo T F, Nature Mater., 2012, 11:963.
[149] Ye Z F, Yang J, Li B, Shi L, Ji H X, Song L, Xu H X. Small, 2017, 13(21):1700111.
[1] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[2] Bowen Xia, Bin Zhu, Jing Liu, Chunlin Chen, Jian Zhang. Synthesis of 2,5-Furandicarboxylic Acid by the Electrocatalytic Oxidation [J]. Progress in Chemistry, 2022, 34(8): 1661-1677.
[3] Xiaoqing Ma. Graphynes for Photocatalytic and Photoelectrochemical Applications [J]. Progress in Chemistry, 2022, 34(5): 1042-1060.
[4] Yaoyu Qiao, Xuehui Zhang, Xiaozhu Zhao, Chao Li, Naipu He. Preparation and Application of Graphene/Metal-Organic Frameworks Composites [J]. Progress in Chemistry, 2022, 34(5): 1181-1190.
[5] Xiaowei Li, Lei Zhang, Qixin Xing, Jinyu Zan, Jin Zhou, Shuping Zhuo. Construction of Magnetic NiFe2O4-Based Composite Materials and Their Applications in Photocatalysis [J]. Progress in Chemistry, 2022, 34(4): 950-962.
[6] Hao Sun, Chaopeng Wang, Jun Yin, Jian Zhu. Fabrication of Electrocatalytic Electrodes for Oxygen Evolution Reaction [J]. Progress in Chemistry, 2022, 34(3): 519-532.
[7] Xin Pang, Shixiang Xue, Tong Zhou, Hudie Yuan, Chong Liu, Wanying Lei. Advances in Two-Dimensional Black Phosphorus-Based Nanostructures for Photocatalytic Applications [J]. Progress in Chemistry, 2022, 34(3): 630-642.
[8] Minglong Lu, Xiaoyun Zhang, Fan Yang, Lian Wang, Yuqiao Wang. Surface/Interface Modulation in Oxygen Evolution Reaction [J]. Progress in Chemistry, 2022, 34(3): 547-556.
[9] Shujin Shen, Cheng Han, Bing Wang, Yingde Wang. Transition Metal Single-Atom Electrocatalysts for CO2 Reduction to CO [J]. Progress in Chemistry, 2022, 34(3): 533-546.
[10] Yan Xu, Chungang Yuan. Preparation, Stabilization and Applications of Nano-Zero-Valent Iron Composites in Water Treatment [J]. Progress in Chemistry, 2022, 34(3): 717-742.
[11] Yaqi Wang, Qiang Wu, Junling Chen, Feng Liang. Diels-Alder Reaction Catalyst [J]. Progress in Chemistry, 2022, 34(2): 474-486.
[12] Xiangjuan Chen, Huan Wang, Weijia An, Li Liu, Wenquan Cui. Study on Photoelectrocatalysis of Organic Carbon Materials [J]. Progress in Chemistry, 2022, 34(11): 2361-2372.
[13] Wenjing Wang, Di Zeng, Juxue Wang, Yu Zhang, Ling Zhang, Wenzhong Wang. Synthesis and Application of Bismuth-Based Metal-Organic Framework [J]. Progress in Chemistry, 2022, 34(11): 2405-2416.
[14] Chenliu Tang, Yunjie Zou, Mingkai Xu, Lan Ling. Photocatalytic Reduction of Carbon Dioxide with Iron Complexes [J]. Progress in Chemistry, 2022, 34(1): 142-154.
[15] Ming Ge, Zheng Hu, Quanbao He. Application of Spinel Ferrite-Based Advanced Oxidation Processes in Organic Wastewater Treatment [J]. Progress in Chemistry, 2021, 33(9): 1648-1664.