中文
Announcement
More
Progress in Chemistry 2018, Vol. 30 Issue (9): 1364-1379 DOI: 10.7536/PC180108 Previous Articles   Next Articles

• Review •

Design Strategy and Application of F- Luminescent Probes

Xi Wang1, Rui Hu2*, Shayu Li1*   

  1. 1. College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China;
    2. Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21205122, 21672219).
PDF ( 426 ) Cited
Export

EndNote

Ris

BibTeX

F- has a very significant impact on human life and ecological environment. Bone and teeth contain the majority of fluoride in the human body, which is closely related to human life activities and metabolism of teeth and bone tissue.Dietary deficiency or excessive intake of fluoride has been related to serious health problems. Moreover, soil and groundwater are contaminated by the use of fluoridated wastewater for irrigation, the settling of fluoridated dust, and the exchange of air in the soil with fluorinated air. Therefore, it is of vital importance to the quantitative detection and control of fluoride. Due to the advantages of good selectivity, in-situ visual and nondestructive detection compared with limitations of traditional methods, the design routine of luminescent probes of fluoride have attracted great interest of researchers,and it also can be used in biological detection or real life productions This review summarizes the research progress in luminescent fluoride probes with various kinds and recognition mechanisms in recent five years. The composite probes based on supported polymers and functionalized nanoparticles are also discussed. Finally, the development trend of luminescent fluoride probes is forecast.
Contents
1 Introduction
2 One-component probes
2.1 Probes based on the interaction of fluoride ion and Lewis acid
2.2 Probes utilizing weak interactions
3 Composite probes
3.1 Organic luminophor
3.2 Inorganic luminophor
4 Conclusion and outlook

CLC Number: 

[1] Cadorim H R, de Gois J S, Borges A R, Vale M G R, Welz B, Gleisner H, Ott C. Talanta, 2018, 176:178.
[2] Xiong Y, Wu J Y, Wang Q, Xu J, Fang S W, Chen J, Duan M. Talanta, 2017:174:372.
[3] Jiao Y, Zhu B, Chen J, Duan X. Theranostics, 2015, 5:173.
[4] Guo Y, Li J, Chai S, Yao J. Nanoscale, 2017, 9:17667.
[5] Zhou Y, Zhang J F, Yoon J. Chem. Rev., 2014, 114:5511.
[6] Dhillon A, Nair M, Kumar D. Anal. Methods, 2016, 8:5338.
[7] Christianson A M, Gabbai F P. J. Organomet. Chem., 2017, 847:154.
[8] Butler S J. Chem. Commun., 2015, 51:10879.
[9] Mi Y S, Liang D M, Chen Y T, Luo X B, Xiang J N. RSC Adv., 2014, 4:42337.
[10] Wu X, Chen X X, Song B N, Huang Y J, Ouyang W J, Li Z, James T D, Jiang Y B. Chem. Commun., 2014, 50:13987.
[11] Sen B, Mukherjee M, Banerjee S, Pal S, Chattopadhyay P. Dalton T., 2015, 44:8708.
[12] Gharami S, Sarkar D, Ghosh P, Acharyya S, Aich K, Murmu N, Mondal T K. Sens. Actuator B-Chem., 2017, 253:317.
[13] Lin Q, Mao P P, Zheng F, Liu L, Liu J, Zhang Y M, Yao H, Wei T B. New J. Chem., 2017, 41:12172.
[14] Li Y, Yu X, Yu T. J. Mater. Chem. C, 2017, 5:5411.
[15] Lin Q, Fan Y Q, Mao P P, Liu L, Liu J, Zhang Y M, Yao H, Wei T B. Chem-Eur. J., 2018, 24:777.
[16] Solls-Delgado L E, Ochoa-Terán A, Yatsimirsky A K, Pina-Luis G. Anal. Lett., 2016, 49:2301.
[17] Turkoglu G, Cinar M E, Ozturk T. Eur. J. Org. Chem., 2017, 2017:4552.
[18] Yang Z R, Wang M M, Wang X S, Yin X B. Anal. Chem., 2017, 89:1930.
[19] Wan W M, Li S S, Liu D M, Lv X H, Sun X L. Macromolecules, 2017, 50:6872.
[20] Wang L, Li L, Cao D. Sens Actuator B-Chem., 2017, 241:1224.
[21] Wu Y T, Zhao J L, Mu L, Zeng X, Wei G, Redshaw C, Jin Z W. Sens. Actuator B-Chem., 2017, 252:1089.
[22] Du F, Bao Y, Liu B, Tian J, Li Q, Bai R. Chem. Commun., 2013, 49:4631.
[23] Roy A, Kand D, Saha T, Talukdar P. Chem. Commun., 2014, 50:5510.
[24] Li B, Zhang C, Liu C, Chen J, Wang X, Liu Z, Yi F. RSC Adv., 2014, 4:46016.
[25] Song Q, Bamesberger A, Yang L, Houtwed H, Cao H. Analyst, 2014, 139:3588.
[26] Roy A, Datar A, Kand D, Saha T, Talukdar P. Org. Biomol. Chem., 2014, 12:2143.
[27] Kumari N, Dey N, Bhattacharya S. Analyst, 2014, 139:2370.
[28] Zhao Z, Bi X Z, Mao W X, Xu X W. Tetrahedron Lett., 2017, 58:4129.
[29] Shi X M, Fan W L, Fan C H, Lu Z L, Bo Q B, Wang Z, Black C A, Wang F F, Wang Y Q. Dyes Pigment., 2017, 140:109.
[30] Roy A, Kand D, Saha T, Talukdar P. RSC Adv., 2014, 4:33890.
[31] Chen J S, Zhou P W, Yang S Q, Fu A P, Chu T S. Phys. Chem. Chem. Phys., 2013, 15:16183.
[32] Saravanan C, Easwaramoorthi S, Hsiow C Y, Wang K, Hayashi M, Wang L. Organic letters, 2014, 16:354.
[33] Liu Y, Wang S Q, Zhao B X. RSC Adv., 2015, 5:32962.
[34] Cheng X, Jia H, Feng J, Qin J, Li Z. Sens. Actuators B-Chem., 2014, 199:54.
[35] Mukhopadhyay A, Maka V K, Moorthy J N. J. Org. Chem., 2016, 81:7741.
[36] Chatterjee M, Ghosh C, Barman M K, Srivastava B, Roy D, Mandal B. RSC Adv., 2016, 6:4410.
[37] Yang Q, Jia C, Chen Q, Du W, Wang Y, Zhang Q. J. Org. Chem. B, 2017, 5:2002.
[38] Wu X, Niu Q, Li T. Sens. Actuators B-Chem., 2016, 222:714.
[39] Dhanunjayarao K, Mukundam V, Venkatasubbaiah K. Sens. Actuators B Chem., 2016, 232:175.
[40] Xu Y, Yang Q, Cao D, Liu Z, Zhao S, Guan R, Wang Y, Wu Q, Yu X. Spectrochim. Acta, Part A, 2017, 182:37.
[41] Suresh R, Thiyagarajan S K, Ramamurthy P. Phys. Chem. Chem. Phys., 2016, 18:32247.
[42] Singh A, Sahoo S K, Trivedi D R. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 2018, 188:596.
[43] Sivamani J, Siva A. Sens. Actuator B-Chem., 2017, 242:423.
[44] Kumar P, Sakla R, Ghosh A, Jose D A. ACS Appl. Mater. Interfaces, 2017, 9:25600.
[45] Yang S, Liu Y, Feng G. RSC Adv., 2013, 3:20171.
[46] Zheng Y, Duan Y, Ji K, Wang R L, Wang B. RSC Adv., 2016, 6:25242.
[47] Zhao Q, Zhang C, Liu S, Liu Y, Zhang K Y, Zhou X, Jiang J, Xu W, Yang T, Huang W. Sci. Rep., 2015, 5:16420.
[48] Jiang G, Liu X, Wu Y, Wang J, Dong X, Zhang G, Li Y, Fan X. RSC Adv., 2016, 6:59400.
[49] Sun J F, Liu R, Zhang Z M, Liu J F. Anal. Chim. Acta, 2014, 820:139.
[50] Gu J A, Lin Y J, Chia Y M, Lin H Y, Huang S T. Microchim. Acta, 2013, 180:801.
[51] da Silva C B, Kroetz T, Santos F S, Rodembusch F S. J. Braz. Chem. Soc., 2017, 28:1830.
[52] Ashokkumar P, Weisshoff H, Kraus W, Rurack K. Angew.Chem., 2014, 53:2225.
[53] Reddy P M, Hsieh S R, Chen J K, Chang C J, Kang J Y, Chen C H. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 2017, 186:8.
[54] Zheng X, Zhu W, Liu D, Ai H, Huang Y, Lu Z. ACS Appl Mater Interfaces, 2014, 6:7996.
[55] Xu L, Liang S S, Gan L B. Org. Chem. Front., 2014, 1:652.
[56] Kaloo M A, Sankar J. Analyst, 2013, 138:4760.
[57] Chaudhri N, Sankar M. RSC Adv., 2015, 5:3269.
[58] Lv Y J. Quim. Nova., 2016, 39:832.
[59] Mahapatra A K, Karmakar P, Roy J, Manna S, Maiti K, Sahoo P, Mandal D. RSC Adv., 2015, 5:37935.
[60] Bai J W, Yin H Y, Zhang Y A, Zhang C H, Liu L J, Xu X D. Eur. Polym. J., 2017, 87:380.
[61] Chen X, Leng T, Wang C, Shen Y, Zhu W. Dyes Pigment., 2017, 141:299.
[62] Zhang L, Liu F. Molecules, 2017, 22:9.
[63] Guo S, Ma Y, Liu S J, Yu Q, Xu A Q, Han J M, Wei L W, Zhao Q, Huang W. Journal of Materials Chemistry C, 2016, 4:6110.
[64] Chen J, Liu C, Zhang J, Ding W, Zhou M, Wu F. Chem. Commun., 2013, 49:10814.
[65] Alam P, Kachwal V, Laskar I R. Sens. Actuator B-Chem., 2016, 228:539.
[66] Shweta S, Kumar A, Neeraj N, Asthana S K, Upadhyay K K. New J. Chem., 2017, 41:5098.
[67] Chanmungkalakul S, Ervithayasuporn V, Hanprasit S, Masik M, Prigyai N, Kiatkamjornwong S. Chem. Commun., 2017, 53:12108.
[68] Li R, Wang S, Li Q, Lan H, Xiao S, Li Y, Tan R, Yi T. Dyes Pigment., 2017, 137:111.
[69] Lee J, Kwon J E, You Y, Park S Y. Langmuir, 2014, 30:2842.
[70] Feng Y T, Li X L, Ma H W, Zhang Z X, Zhang M, Hao S Y. Dyes Pigment., 2018, 153:200.
[71] Lee D, Lee C, Jun E J, Lee M, Park S, Yoon J. Chemistry Open, 2017, 6:476.
[72] Chanmungkalakul S, Ervithayasuporn V, Hanprasit S, Masik M, Prigyai N, Kiatkamjornwong S. Chem. Commun,2017, 53, 12108.
[73] Zhao X D, Wang Y Y, Hao X L, Liu W. Appl.Surf. Sci., 2017, 402:129.
[74] Tao J, Zhao P, Li Y, Zhao W, Xiao Y, Yang R. Anal. Chim. Acta, 2016, 918:97.
[75] Mahajan P G, Kolekar G B, Patil S R. Luminescence, 2017, 32:845.
[76] Wang C, Yang S, Yi M, Liu C, Wang Y, Li J, Li Y, Yang R. ACS Appl. Mater. Interfaces, 2014, 6:9768.
[77] Boxi S S, Paria S. Dalton T., 2016, 45:811.
[78] Ding C P, Cao X Y, Zhang C L, He T R, Hua N, Xian Y Z. Nanoscale, 2017, 9:14031.
[79] Singh P, Prabhune A A, Tripathi C S P, Guin D. ACS Sustain Chem. Eng., 2017, 5:982.
[80] Singhal P, Vats B G, Jha S K, Neogy S. ACS Appl. Mater. Interfaces, 2017, 9:20536.
[81] Tian X K, Wang J H, Li Y, Yang C, Lu L Q, Nie Y L. Sens. Actuator B-Chem., 2018, 262:522.
[82] Chen X, Yu S, Yang L, Wang J, Jiang C. Nanoscale, 2016, 8:13669
[1] Anchen Fu, Yanjia Mao, Hongbo Wang, Zhijuan Cao. Development and Application of Dioxetane-based Chemiluminescent Probes [J]. Progress in Chemistry, 2023, 35(2): 189-205.
[2] Jing Li, Weigang Zhu, Wenping Hu. Organic Complex Materials and Devices for Near and Shortwave Infrared Photodetection [J]. Progress in Chemistry, 2023, 35(1): 119-134.
[3] Lan Yu, Peiran Xue, Huanhuan Li, Ye Tao, Runfeng Chen, Wei Huang. Circularly Polarized Thermally Activated Delayed Fluorescence Materials and Their Applications in Organic Light-Emitting Devices [J]. Progress in Chemistry, 2022, 34(9): 1996-2011.
[4] Yanqin Lai, Zhenda Xie, Manlin Fu, Xuan Chen, Qi Zhou, Jin-Feng Hu. Construction and Application of 1,8-Naphthalimide-Based Multi-Analyte Fluorescent Probes [J]. Progress in Chemistry, 2022, 34(9): 2024-2034.
[5] Chuanjun Yuan, Meng Wang, Ming Li, Jinpeng Bao, Pengrui Sun, Rongxuan Gao. Application of Luminescent Materials Based on Carbon Dots in Development of Latent Fingerprints [J]. Progress in Chemistry, 2022, 34(9): 2108-2120.
[6] Yuhang Zhou, Sha Ding, Yong Xia, Yuejun Liu. Fluorescent Probes for Cysteine Detection [J]. Progress in Chemistry, 2022, 34(8): 1831-1862.
[7] Shuhui Li, Qianqian Li, Zhen Li. From Single Molecule to Molecular Aggregation Science [J]. Progress in Chemistry, 2022, 34(7): 1554-1575.
[8] Dongxue Han, Xue Jin, Wangen Miao, Tifeng Jiao, Pengfei Duan. Responsiveness of Excited State Chirality Based on Supramolecular Assembly [J]. Progress in Chemistry, 2022, 34(6): 1252-1262.
[9] Yu Lin, Xuecai Tan, Yeyu Wu, Fucun Wei, Jiawen Wu, Panpan Ou. Two-Dimensional Nanomaterial g-C3N4 in Application of Electrochemiluminescence [J]. Progress in Chemistry, 2022, 34(4): 898-908.
[10] Bin Li, Ying Yu, Guoxiang Xing, Jinfeng Xing, Wanxing Liu, Tianyong Zhang. Progress in Circularly Polarized Light Emission of Chiral Inorganic Nanomaterials [J]. Progress in Chemistry, 2022, 34(11): 2340-2350.
[11] Mingxin Zheng, Zhenzhi Tan, Jinying Yuan. Construction and Application of Photoresponsive Janus Particles [J]. Progress in Chemistry, 2022, 34(11): 2476-2488.
[12] Bin Li, Yanyan Fu, Jiangong Cheng. Fluorescent Probes for Detection of Organophosphorus Nerve Agents and Simulants [J]. Progress in Chemistry, 2021, 33(9): 1461-1472.
[13] Dan Zhao, Changtao Wang, Lei Su, Xueji Zhang. Application of Fluorescence Nanomaterials in Pathogenic Bacteria Detection [J]. Progress in Chemistry, 2021, 33(9): 1482-1495.
[14] Xingchen Wu, Wenhui Liang, Chenxin Cai. Photoluminescence Mechanisms of Carbon Quantum Dots [J]. Progress in Chemistry, 2021, 33(7): 1059-1073.
[15] Quanfei Zhu, Jundi Hao, Jingwen Yan, Yu Wang, Yuqi Feng. FAHFAs: Biological Functions, Analysis and Synthesis [J]. Progress in Chemistry, 2021, 33(7): 1115-1125.