中文
Announcement
More
Progress in Chemistry 2018, Vol. 30 Issue (8): 1143-1160 DOI: 10.7536/PC180106 Previous Articles   Next Articles

• Review •

Preparation and Application of Acidic Ionic Liquid Hybrid Solid Catalytic Materials

Wenqiao Liu1,2, Zhen Li1*, Chungu Xia1   

  1. 1. State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics(LICP), Chinese Academy of Sciences, Lanzhou 730000, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No.21673259), the Natural Science Foundation of Jiangsu Province of China(No.BK20171241), the Youth Innovation Promotion Association of CAS(No.2018453), and the Suzhou Science and Technology Bureau of Applied Foundation Research Project(No.SYG201628).
PDF ( 970 ) Cited
Export

EndNote

Ris

BibTeX

Acidic ionic liquids hybrid solid catalytic materials are prepared by the immobilization of acidic ionic liquids into inorganic supports, organic supports, metal-organic frameworks and other types of solid materials, which combine the features of acidic ionic liquids with heterogeneous solid supports. These hybrid materials have played an important role in many acid-catalyzed processes, exhibiting not only good catalytic performance but also superior reusabilities. In this review, the latest achievements toward acidic ionic liquids hybrid solid catalytic materials are presented, especially for the preparation methods based on different supports and their catalytic performance in many reactions, such as alkylation, acetalization and esterification. Meanwhile, the existing problems in applications are analyzed, and the development trends and prospects are put forward.
Contents
1 Introduction
2 Immobilization of acidic ionic liquids
2.1 Immobilization of acidic ionic liquids into inorganic support
2.2 Immobilization of acidic ionic liquids into organic polymer support
2.3 Immobilization of acidic ionic liquids into organic-inorganic hybrid materials
3 Applications of acidic ionic liquids hybrid solid catalytic materials
3.1 Alkylation reaction
3.2 Acetal reaction
3.3 Esterification and transesterification
3.4 Condensation reaction
3.5 Multicomponent reaction
3.6 Deep oxidation desulfurization
3.7 Cycloaddition reaction of carbon dioxide
4 Conclusion and outlook

CLC Number: 

[1] Welton T. Chem. Rev., 1999, 99:2071.
[2] Davis J H. Chem. Lett., 2004, 33:1072.
[3] Cole A C, Jensen J L, Ntai I, Tran K L T, Weaver K J, Forbes D C, Davis J H. J. Am. Chem. Soc., 2001, 124(21):5962.
[4] Li D M, Shi F, Peng J J, Guo S, Deng Y Q. J. Org. Chem., 2004, 69(10):3582.
[5] Arfan A, Bazureau J P. Org. Proces. Res. Dev., 2005, 9(6):743.
[6] 王敬娴(Wang J X), 吴芹(Wu Q), 黎汉生(Li H S), 甄彬(Zhen B). 化工进展(Chem. Ind. Eng. Prog.), 2008, 27(10):1574.
[7] Kresge C, Leonowicz M, Roth W, Vartuli J, Beck J. Nature, 1992, 359:710.
[8] Zhao D Y, Feng J L, Huo Q S, Melosh N, Fredrickson G H, Chmelka B F, Stucky G D. Science, 1998, 279:548.
[9] Hoffman F, Cornelius M, Morell J, Fröba M. Angew. Chem. Int. Ed., 2006, 45:3216.
[10] Deng Y H, Qi D W, Deng C H, Zhang X M, Zhao D Y. J. Am. Chem. Soc., 2008, 130:28.
[11] Kang Y S, Risbud S, Rabolt J F, Stroeve P. Chem. Mater., 1996, 8:2209.
[12] Palu D, Robeson L. Polymer, 2008, 49:3187.
[13] Jancar J, Douglas J, Starr F W, Kumar S, Cassagnau P, Lesser A, Sternstain S S, Buehler M. Polymer, 2010, 51:3321.
[14] James S L. Chem. Soc. Rev., 2003, 32:276.
[15] Meek S T, Greathouse J A, Allendorf M D. Adv. Mater., 2011, 23:249.
[16] Zhou H C, Long J R, Yaghi O M. Chem. Rev., 2012, 112:673.
[17] 李雪辉(Li X H), 潘微平(Pan W P). 现代化工(Mod. Chem. Ind.), 2005, 25(12):61.
[18] Kumar P, Vermeiren W, Dath J P, Hoelderich W F. Appl. Catal. A:General., 2006, 304:131.
[19] Amarasekara A S, Owereh O S. Catal. Commun., 2010, 11(13):1072.
[20] Miao J M, Wan H, Shao Y B, Guan G F, Xu B. J. Mol. Catal. A:Chem., 2011, 348(1/2):77.
[21] Safari J, Zarnegar Z. New J. Chem., 2014, 38:358.
[22] Zhang Q, Su H, Luo J, Wei Y Y. Green. Chem., 2012, 14:201.
[23] Yin S S, Sun J, Liu B, Zhang Z H. J. Mater. Chem. A, 2015, 3:4992.
[24] Amarasekara A S, Wiredu B. Curr. Catal., 2013, 2(3):219.
[25] Xu Z J, Wan H, Miao J M, Han M J, Yang C, Guan G F. J. Mol. Catal. A:Chem., 2010, 332:152.
[26] Sugimura R, Qiao K, Tomida D, Yokoyama C. Catal. Commun., 2007, 8:770.
[27] Boroujeni K P, Ghasemi P, Rafienia Z. Monatsh. Chem., 2014, 145:1023.
[28] Kiasat A R, Mouradzadegun A, Saghanezhad S J. Res. Chem. Intermed., 2015, 41:319.
[29] Liang X Z. Kinetics and Catalysis, 2013, 54(6):724.
[30] Xing G Y. Monatsh. Chem., 2013, 144:1369.
[31] Shao Y B, Wan H, Miao J M, Guan G F. Reac. Kinet. Mech. Cat., 2013, 109:149.
[32] Yamada Y, Qiao K, Bao Q X, Tomida D, Nagao D, Konno M, Yokoyama C. Catal. Commun., 2009, 11:227.
[33] Zhao H H, Yu N Y, Wang J Q, Zhuang D Y, Ding Y, Tan R, Yin D H. Microporous and Mesoporous Materials, 2009, 122:240.
[34] Wu Z W, Chen C, Wang L, Wan H, Guan G F. Ind. Eng. Chem. Res., 2016, 55:1833.
[35] Férey G, Mellot-Draznieks C, Serre C, Millange F, Dutour J, Surble S, Mardiolaki I. Science, 2005, 309:2040.
[36] Luo Q X, Ji M, Lu M H, Hao C, Qiu J S, Li Y Q. J. Mater. Chem. A, 2013, 1:6530.
[37] Han M J, Gu Z, Chen C, Wu Z W, Que Y G, Wang Q, Wan H, Guan G F. RSC Adv., 2016, 6:37110.
[38] Wu Z W, Chen C, Wan H, Wang L, Li Z, Li B X, Guo Q R, Guan G F. Energy Fuels, 2016, 30:10739.
[39] Wan H, Chen C, Wu Z W, Que Y G, Feng Y, Wang W, Wang L, Guan G F. Chem. Cat. Chem., 2015, 7:441.
[40] DeCastro C, Sauvage E, Valkenberg M H, Hölderich W F. J. Catal., 2000, 196:86.
[41] Wang G J, Yu N Y, Peng L, Tan R, Zhao H H, Yin D H, Qiu H Y, Fu Z H, Yin D L. Catal. Lett., 2008, 123:252.
[42] Vafaeezadeh M, Dizicheh Z B, Hashemi M M. Catal. Commun., 2013, 41:96.
[43] Liang X Z, Xiao H Q, Qi C Z. Fuel Processing Technology, 2013, 110:109.
[44] Liang X Z. Ind. Eng. Chem. Res., 2013, 52:6894.
[45] Wu Y J, Li Z, Xia C G. Ind. Eng. Chem. Res., 2016, 55:1859.
[46] Miao J M, Wan H, Guan G F. Catal. Commun., 2011, 12:353.
[47] Huang J, Jiang T, Gao H X, Han B X, Liu Z M, Wu W Z, Chang Y H, Zhao G Y. Angew. Chem. Int. Ed., 2004, 43:1397.
[48] He L, Wang J Q, Gong Y, Liu Y M, Cao Y, He H Y, Fan K N. Angew. Chem. Int. Ed., 2011, 50:10216.
[49] Maria J C, Avelino C, Sara I. Chem. Rev., 2011, 111:1072.
[50] Wan Y, Wang H Y, Zhao Q F, Miia K, Osamu T, Zhao D Y. J. Am. Chem. Soc., 2009, 131:4541.
[51] Liu F J, Wang L, Sun Q, Zhu L F, Meng X J, Xiao F S. J. Am. Chem. Soc., 2012, 134:16948.
[52] Boroujeni K P, Jafarinasab M. Chin. Chem. Lett., 2012, 23:1067.
[53] Kiasat A R, Mouradzadegun A, Saghanezhad S J. Chin. J. Catal., 2013, 34:1861.
[54] Davoodnia A, Yassaghi G. Chin. J. Catal., 2012, 33:1950.
[55] Zhang Q, Luo J, Wei Y Y. Green Chem., 2010, 12:2246.
[56] Kotadia D A, Soni S S. J. Mol. Catal. A:Chem., 2012, 353/354:44.
[57] Rostamizadeh S, Nojavan M, Aryan R, Azad M. Catal. Lett., 2014, 144:1772.
[58] Wu J X, Gao Y L, Zhang W, Tan Y Y, Tang A M, Men Y, Tang B H J. Appl. Organometal. Chem., 2015, 29:96.
[59] Wu J X, Gao Y L, Zhang W, Tan Y Y, Tang A M, Men Y, Tang B H J. RSC Adv., 2014, 4:58800.
[60] Wu J X, Gao Y L, Zhang W, Tan Y Y, Tang A M, Men Y, Tang B H. J. Appl. Petrochem. Res., 2016, 6:361.
[61] Cai C, Wang H, Han J Y. Applied Surface Science, 2011, 257:9802.
[1] Dandan Wang, Zhaoxin Lin, Huijie Gu, Yunhui Li, Hongji Li, Jing Shao. Modification and Application of Bi2MoO6 in Photocatalytic Technology [J]. Progress in Chemistry, 2023, 35(4): 606-619.
[2] Xinglong Li, Yao Fu. Preparation of Furoic Acid by Oxidation of Furfural [J]. Progress in Chemistry, 2022, 34(6): 1263-1274.
[3] Yuanju Jing, Chun Kang, Yanxin Lin, Jie Gao, Xinbo Wang. MXene-Based Single-Atom Catalysts: Synthesis and Electrochemical Catalysis [J]. Progress in Chemistry, 2022, 34(11): 2373-2385.
[4] Meirong Kang, Fuxiang Jin, Zhen Li, Heyuan Song, Jing Chen. Research and Application of Supported Ionic Liquids [J]. Progress in Chemistry, 2020, 32(9): 1274-1293.
[5] Chen Hou, Wenqiang Chen, Linhui Fu, Sufeng Zhang, Chen Liang. Covalent Organic Frameworks(COFs) Materials in Enzyme Immobilization and Mimic Enzymes [J]. Progress in Chemistry, 2020, 32(7): 895-905.
[6] Xinzhi Wang, Hongli Wang, Feng Shi. Alcohol Amination for N-Alkyl Amine Synthesis with Heterogeneous Catalysts [J]. Progress in Chemistry, 2020, 32(2/3): 162-178.
[7] Xingwang Lan, Guoyi Bai. Covalent Organic Framework Catalytic Materials: CO2 Conversion and Utilization [J]. Progress in Chemistry, 2020, 32(10): 1482-1493.
[8] Shengnan Zhang, Dongmei Han, Shan Ren, Min Xiao, Shuanjin Wang, Yuezhong Meng. Immobilization Strategies of Organic Electrode Materials [J]. Progress in Chemistry, 2020, 32(1): 103-118.
[9] Jiawei Li, Yanwei Ren, Huanfeng Jiang. Application of Metal-Organic Framework Materials in the Chemical Fixation of Carbon Dioxide [J]. Progress in Chemistry, 2019, 31(10): 1350-1361.
[10] Ming Ge, Zhenlu Li. All-Solid-State Z-Scheme Photocatalytic Systems Based on Silver-Containing Semiconductor Materials [J]. Progress in Chemistry, 2017, 29(8): 846-858.
[11] Pengyuan Wang, Changsheng Guo, Jianfeng Gao, Jian Xu. Preparation of Graphite Phase C3N4 and Bismuth Based Composite Photocatalyst and Its Environmental Application [J]. Progress in Chemistry, 2017, 29(2/3): 241-251.
[12] Fu Xianbiao, Yu Guipeng. Covalent Organic Frameworks Catalysts [J]. Progress in Chemistry, 2016, 28(7): 1006-1015.
[13] Zhao Xinhong, Gao Xiangping, Hao Zhixin, Zhang Xiaoxiao. Synthesis, Characterization and Catalytic Applications of Hierarchically Porous Aluminophosphate Molecular Sieves [J]. Progress in Chemistry, 2016, 28(5): 686-696.
[14] Wan Xiaomei, Zhang Chuan, Yu Dinghua, Huang He, Hu Yi. Enzyme Immobilized on Carbon Nanotubes [J]. Progress in Chemistry, 2015, 27(9): 1251-1259.
[15] Min Yuanyuan, Shang Yunshan, Song Yu, Li Guodong, Gong Yanjun. The Synthesis of Nanosheets Zeolite and Its Catalytic Application [J]. Progress in Chemistry, 2015, 27(8): 1002-1013.