中文
Announcement
More
Progress in Chemistry 2018, Vol. 30 Issue (5): 673-683 DOI: 10.7536/PC180101 Previous Articles   Next Articles

• Review •

Construction and Functions of Supramolecular Cyclodextrin Gels

Qian Zhao, Shenghua Li, Yu Liu*   

  1. State Key Laboratory of Elemental-Organic Chemistry, Collaborative Innovation Center of Chemistry Science and Engineering, Department of Chemistry, Nankai University, Tianjin 300071, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No.21432004, 91527301) and the China Postdoctoral Science Foundation(No. 2016M591380).
PDF ( 1020 ) Cited
Export

EndNote

Ris

BibTeX

Cyclodextrin, as a good water-soluble and biocompatible macrocycle, has attracted much attention due to its specific bonding with inorganic/organic/biological substrates. While combining the advantages of solid's elasticity and liquid's mobility, the gels are widely applied in many fields. The supramolecular gels based on cyclodextrin stand out in the field of soft materials due to the integration of the advantages of cyclodextrin and gel, Therefore, this review embarking upon the construction of cyclodextrin gels, discusses the driving force of their formation such as hydrogen bonding, host-guest bonding and ion interaction. Then the latest research on the functions of supramolecular cyclodextrin gels including biological/sensing/adsorption/smart materials including sliding materials are reviewed, which provide an outlook for the construction and functions of new cyclodextrin gels. Finally, the development and application of cyclodextrin gel materials are discussed and prospected.
Contents
1 Introduction
2 Construction of cyclodextrin supramolecular gels
2.1 Hydrogen bonding
2.2 Host-guest complexation
2.3 Ionic interaction
3 Application of cyclodextrin supramolecular gels
3.1 Biological applications
3.2 Sensors
3.3 Removal of pollutants in water environment
3.4 Smart materials
4 Conclusion

CLC Number: 

[1] Lai W F, Rogach A L, Wong W T. Chem. Soc. Rev., 2017, 46:6379.
[2] Prochowicz D, Kornowicz A, Lewiński J. Chem. Rev., 2017, 117:13461.
[3] Varan G, Varan C, Erdogar N, Hincal A A, Bilensoy E. Int. J. Pharm., 2017, 531:457.
[4] Nakahata M, Takashima Y, Harada A. Chem. Pharm. Bull., 2017, 65:330.
[5] Kolesnichenko I V, Anslyn E V. Chem. Soc. Rev., 2017, 46:2385.
[6] Liu B W, Zhou H, Zhou S T, Yuan J Y. Eur. Polym. J., 2015, 65:63.
[7] Schmidt B V K J, Barner-Kowollik C. Angew. Chem. Int. Ed., 2017, 56:8350.
[8] Szente L, Fenyvesi É. Struct. Chem., 2017, 28:479.
[9] Hu X, Gao J B, Luo Y, Wei T, Dong Y S, Chen G J, Chen H. Macromol. Rapid Commun., 2017, 38:1700434.
[10] Ma X E, Zhou N Z, Zhang T Z, Hu W J, Gu N. Mater. Sci. Eng. C, 2017, 73:357.
[11] Wang J, Li Q T, Yi S J, Chen X. Soft Matter, 2017, 13:6490.
[12] Xie F, Ouyang G H, Qin L, Liu M H. Chem. Eur. J., 2016, 22:18208.
[13] Li Y, Li J Z, Zhao X, Yan Q, Gao Y X, Hao J, Hu J, Ju Y. Chem. Eur. J., 2016, 51:18435.
[14] Ma M F, Luan T X, Yang M M, Liu B, Wang Y J, An W, Wang B, Tang R P, Hao A Y. Soft Matter, 2017, 13:1534.
[15] Xiao Y Y, Gong X L, Kang Y, Jiang Z C, Zhang S, Li B J. Chem. Commun., 2016, 52:10609.
[16] Li Z Q, Zhang Y M, Wang H Y, Li H, Liu Y. Macromolecules, 2017, 50:1141.
[17] Han S, Wang T, Yang L, Li B. Int. J. Biol. Macromol., 2017, 105:377.
[18] Tong L, Yang Y J, Luan X Y, Shen J L, Xin X. Colloids Surf. A, 2017, 522:470.
[19] Kong L, Zhang F, Xing P X, Chu X X, Hao A Y. Colloids Surf. A, 2017, 522:577.
[20] Yin L, Xu S X, Feng Z J, Deng H Z, Zhang J H, Gao H J, Deng L D, Tang H, Dong A J. Biomater. Sci., 2017, 5:698.
[21] Dai L, Liu K F, Wang L Y, Liu J, He J, Liu X Y, Lei J D. Mater. Sci. Eng., C, 2017, 76:966.
[22] Mu S S, Liang Y Y, Chen S J, Zhang L M, Liu T. Mater. Sci. Eng. C, 2015, 50:294.
[23] Zhang W, Zhou X Y, Liu T, Ma D, Xue W. J. Mater. Chem. B, 2015, 3:2127.
[24] Wang X Y, Wang C P, Zhang Q, Cheng Y Y. Chem. Commun., 2016, 52:978.
[25] Seki T, Namiki M, Egawa Y, Miki R, Juni K, Seki T. Materials, 2015, 8:1341.
[26] Tsuchido Y, Fujiwara S, Hashimoto T, Hayashita T. Chem. Pharm. Bull., 2017, 65:318.
[27] Matsumoto K, Kawamura A, Miyata T. Macromolecules, 2017, 50:2136.
[28] Massaro M, Colletti C G, Lazzara G, Guernelli S, Noto R, Riela S. ACS Sustain. Chem. Eng., 2017, 5:3346.
[29] Duan G J, Zhong Q Q, Bi L, Yang L, Liu T H, Shi X N, Wu W S. Polymers, 2017, 9:201.
[30] Takashima Y, Harada A. J. Incl. Phenom. Macrocycl. Chem., 2017, 88:85.
[31] Harada A. Polym. J., 1994, 26:1019.
[32] Zhao Q, Chen Y, Liu Y. Chin. Chem. Lett., 2018, 29:84.
[33] Ito K. Chem. Pharm. Bull., 2017, 65:326.
[34] Li Z, Zheng Z, Su S, Yu L, Wang X L. Macromolecules, 2016, 49:373.
[35] Yasumoto A, Gotoh H, Gotoh Y, Imran A B, Hara M, Seki T, Sakai Y, Ito K, Takeoka Y. Macromolecules, 2017, 50:364.
[36] Koyanagi K, Takashima Y, Yamaguchi H, Harada A. Macromolecules, 2017, 50:5695.
[37] Uchida W, Yoshikawa M, Seki T, Miki R, Seki T, Fujihara T, Ishimaru Y, Egawa Y. J. Incl. Phenom. Macrocycl. Chem., 2017, 89:281.
[38] Nishida K, Tamura A, Yui N. Macromolecules, 2016, 49:6021.
[39] Yu H S, Liu Y F, Yang H Y, Peng K, Zhang X Y. Macromol. Rapid Commun., 2016, 37:1723.
[40] Araki J, Honda Y, Kohsaka Y. Polymer, 2017, 125:134.
[41] Jang K, Iijima K, Koyama Y, Uchida S, Asai S, Takata T. Polymer, 2017, 128:379.
[42] Ohmori K, Abu Bin I, Seki T, Liu C, Mayumi K, Ito K, Takeoka Y. Chem. Commun., 2016, 52:13757.
[43] Iijima K, Aoki D, Otsuka H, Takata T. Polymer, 2017, 128:392.
[44] Nakahata M, Mori S, Takashima Y, Yamaguchi H, Harada A. Chem, 2016, 1:766.
[45] Murakami T, Schmidt B V K J, Brown H R, Hawker C J. J. Polym. Sci. Part A:Polym. Chem., 2017, 55:1156.
[46] Kali G, Eisenbarth H, Wenz G. Macromol. Rapid Commun., 2016, 37:67.
[47] Rodell C B, Dusaj N N, Highley C B, Burdick J A. Adv. Mater., 2016, 28:8419.
[48] Lin Q M, Yang Y M, Hu Q, Guo Z, Liu T, Xu J K, Wu J P, Kirk T B, Ma D, Xue W. Acta Biomater., 2017, 49:456.
[49] Liu X, Chen X, Chua M X, Li Z, Loh X J, Wu Y L. Adv. Healthcare Mater., 2017, 6:1700159.
[50] Hörning M, Nakahata M, Linke P, Yamamoto A, Veschgini M, Kaufmann S, Takashima Y, Harada A, Tanaka M. Sci. Rep., 2017, 7:7660.
[51] Yi P P, Wang Y F, He P X, Zhan Y, Sun Z G, Li Y L, Zhang Y H. Mater. Sci. Eng. C, 2017, 78:773.
[52] Wang X, Wang J, Yang Y Y, Yang F, Wu D C. Polym. Chem., 2017, 8:3901.
[53] Sheng J, Wang Y, Xiong L, Luo Q J, Li X D, Shen Z Q, Zhu W P. Polym. Chem., 2017, 8:1680.
[54] Flores C, Lopez M, Tabary N, Neut C, Chai F, Betbeder D, Herkt C, Cazaux F, Gaucher V, Martel B, Blanchemain N. Carbohydr. Polym., 2017, 173:535.
[55] Morelli L, Cappelluti M A, Ricotti L, Lenardi C, Gerges I. Macromol. Biosci., 2017, 17:1700103.
[56] Sun N, Wang T, Yan X F. Carbohydr. Polym., 2017, 172:49.
[57] Zhao Q, Chen Y, Li S H, Liu Y. Chem. Commun., 2018, 54:200.
[58] Parsamanesh M, Tehrani A D, Mansourpanah Y. Eur. Polym. J., 2017, 92:126.
[59] Topuz F, Uyar T. J. Hazard. Mater., 2017, 335:108.
[60] Kono H, Onishi K, Nakamura T. Carbohydr. Polym., 2013, 98:784.
[61] Wu Y C, Qi H J, Shi C, Ma R X, Liu S X, Huang Z H. RSC Adv., 2017, 7:31549.
[62] Heydari A, Sheibani H. RSC Adv., 2015, 5:82438.
[63] Huang Z H, Wu Q L, Liu S X, Liu T, Zhang B. Carbohydr. Polym., 2013, 97:496.
[64] Varghese L R, Das N. Ecol. Eng., 2015, 85:201.
[65] Takashima Y, Hatanaka S, Otsubo M, Nakahata M, Kakuta T, Hashidzume A, Yamaguchi H, Harada A. Nat. Commun., 2012, 3:1270.
[66] Yang Q F, Wang P, Zhao C Z, Wang W Q, Yang J F, Liu Q. Macromol. Rapid Commun., 2017, 38:1600741.
[67] Hao X, Xu M M, Hu J, Yan Q. J. Mater. Chem. C, 2017, 5:10549.
[68] Katsuno C, Konda A, Urayama K, Takigawa T, Kidowaki M, Ito K. Adv. Mater., 2013, 25:4636.
[69] Takashima Y, Yonekura K, Koyanagi K, Iwaso K, Nakahata M, Yamaguchi H, Harada A. Macromolecules, 2017, 50:4144.
[70] Nakamura T, Takashima Y, Hashidzume A, Yamaguchi H, Harada A. Nat. Commun., 2014, 5:4622.
[71] Kakuta T, Takashima Y, Sano T, Nakamura T, Kobayashi Y, Yamaguchi H, Harada A. Macromolecules, 2015, 48:732.
[72] Song L X, Yang J, Bai L, Du F Y, Chen J, Wang M. Inorg. Chem., 2011, 50:1682.
[73] Dang Z, Song L X, Yang J, Chen J, Teng Y. Dalton Trans., 2012, 41:3006.
[1] Gehui Chen, Nan Ma, Shuaibing Yu, Jiao Wang, Jinming Kong, Xueji Zhang. Immunity and Aptamer Biosensors for Cocaine Detection [J]. Progress in Chemistry, 2023, 35(5): 757-770.
[2] Yan Bao, Jiachen Xu, Ruyue Guo, Jianzhong Ma. High-Sensitivity Flexible Pressure Sensor Based on Micro-Nano Structure [J]. Progress in Chemistry, 2023, 35(5): 709-720.
[3] Xuedan Qian, Weijiang Yu, Junzhe Fu, Youxiang Wang, Jian Ji. Fabrication and Biomedical Application of Hyaluronic Acid Based Micro- and Nanogels [J]. Progress in Chemistry, 2023, 35(4): 519-525.
[4] Yiming Chen, Huiying Li, Peng Ni, Yan Fang, Haiqing Liu, Yunxiang Weng. Catechol Hydrogel as Wet Tissue Adhesive [J]. Progress in Chemistry, 2023, 35(4): 560-576.
[5] Yu Xiaoyan, Li Meng, Wei Lei, Qiu Jingyi, Cao Gaoping, Wen Yuehua. Application of Polyacrylonitrile in the Electrolytes of Lithium Metal Battery [J]. Progress in Chemistry, 2023, 35(3): 390-406.
[6] Liangchun Li, Renlin Zheng, Yi Huang, Rongqin Sun. Self-Sorting Assembly in Multicomponent Self-Assembled Low Molecular Weight Hydrogels [J]. Progress in Chemistry, 2023, 35(2): 274-286.
[7] Jinglong Zhao, Wenfeng Shen, Dawu Lv, Jiaqi Yin, Tongxiang Liang, Weijie Song. Gas-Sensing Technology for Human Breath Detection [J]. Progress in Chemistry, 2023, 35(2): 302-317.
[8] Yanyu Zhong, Zhengyun Wang, Hongfang Liu. Progress in Electrochemical Sensing of Ascorbic Acid [J]. Progress in Chemistry, 2023, 35(2): 219-232.
[9] Keqing Wang, Huimin Xue, Chenchen Qin, Wei Cui. Controllable Assembly of Diphenylalanine Dipeptide Micro/Nano Structure Assemblies and Their Applications [J]. Progress in Chemistry, 2022, 34(9): 1882-1895.
[10] Jiyang Lu, Tiantian Wang, Xiangxiang Li, Fuming Wu, Hui Yang, Wenping Hu. Flexible Sensors Based on Electrohydrodynamic Jet Printing [J]. Progress in Chemistry, 2022, 34(9): 1982-1995.
[11] Yiling Tan, Shichun Li, Xi Yang, Bo Jin, Jie Sun. Strategies of Improving Anti-Humidity Performance for Metal Oxide Semiconductors Gas-Sensitive Materials [J]. Progress in Chemistry, 2022, 34(8): 1784-1795.
[12] Fengqi Liu, Yonggang Jiang, Fei Peng, Junzong Feng, Liangjun Li, Jian Feng. Preparation and Application of Ultralight Nanofiber Aerogels [J]. Progress in Chemistry, 2022, 34(6): 1384-1401.
[13] Shiyu Li, Yongguang Yin, Jianbo Shi, Guibin Jiang. Application of Covalent Organic Frameworks in Adsorptive Removal of Divalent Mercury from Water [J]. Progress in Chemistry, 2022, 34(5): 1017-1025.
[14] Yaoyu Qiao, Xuehui Zhang, Xiaozhu Zhao, Chao Li, Naipu He. Preparation and Application of Graphene/Metal-Organic Frameworks Composites [J]. Progress in Chemistry, 2022, 34(5): 1181-1190.
[15] Hongji Jiang, Meili Wang, Zhiwei Lu, Shanghui Ye, Xiaochen Dong. Graphene-Based Artificial Intelligence Flexible Sensors [J]. Progress in Chemistry, 2022, 34(5): 1166-1180.