中文
Announcement
More
Progress in Chemistry 2018, Vol. 30 Issue (5): 586-600 DOI: 10.7536/PC171248 Previous Articles   Next Articles

Special Issue: 酶化学

• Review •

Synthesis and Glycosidase Inhibitory Activities of Fluorinated Iminosugars

Yixian Li1,2*, Yuemei Jia1,2, Chuyi Yu1,2,3*   

  1. 1. CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China;
    3. National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21772206, 21642012).
PDF ( 320 ) Cited
Export

EndNote

Ris

BibTeX

Iminosugars have shown great potential in pharmaceutical industry due to their potent glycosidase inhibition, anti-virus and anti-cancer activities. Systematic study of structure-activity relationship of iminosugars will help to develop highly active and selective lead compounds. Fluorination is usually the most used method of studying structure-activity relationship. This review summarized the reported synthetic strategies of fluorinated iminosugars and the related glycosidase inhibitory activities. The synthetic strategies are roughly categorized to three types, namely, fluorine containing building blocks, fluorinated sugars and fluorinating reagents, and each of them is reviewed with merits, disadvantages and its application. The structure-activity relationship of some representative iminosugars is then preliminarily concluded based on the reported glycosidase inhibitory activities of fluorinated iminosugars. Intact iminosugar ring is believed important for interaction with enzymes, while fluorination of side chain and the fused ring would influence inhibitory spectrum and potency, respectively. Therefore, the current research results of fluorinated iminosugars have made important contributions to iminosugar chemistry. With fluorine as tool, the structure-activity relationship of iminosugars can be further completed and corrected in the future, and therefore would certainly help to provide profound foundation for the design and syntheses of iminosugars with potential medicinal values, and thus effectively promote the related drug discovery.
Contents
1 Iminosugar and its application
2 Synthetic strategies of fluorinated iminosugars and related biological activity study
2.1 Synthesis of fluorinated iminosugars from fluorinated building blocks
2.2 Synthesis of fluorinated iminosugars from fluorinated sugars
2.3 Synthesis of fluorinated iminosugars by subsequent introduction of fluorine
3 Fluorination in structure-activity relationship study of iminosugars

CLC Number: 

[1] Butters T D, Dwek R A, Platt F M. Chem. Rev., 2000, 100:4683.
[2] Wong C H, Dumas D P, Ichikawa Y, Koseki K, Danishefsky S J, Weston B W, Lower J B. J. Am Chem. Soc., 1992, 114:7321.
[3] Compain P, Martin O R. Curr. Top. Med. Chem., 2003, 3:541.
[4] Bols M, Hazelle R, Thomsen I B. Chem. Eur. J., 1997, 3:940.
[5] Somsak L, Nagy V, Hadady Z, Docsa T, Gergely P. Curr. Pharm. Des., 2003, 9:1177.
[6] Moriyama H, Tsukida T, Inoue Y, Yokota K, Yoshino K, Kondo H, Miura N, Nishimura S I. J. Med. Chem., 2004, 47:1930.
[7] Lee R E, Smith M D, Nash R J, Griffiths R C, McNeil M, Grewal R K, Yan W, Besra G S, Brennan P J, Fleet G W J. Tetrahedron Lett., 1997, 38:6733.
[8] Liautard V, Desvergnes V, Itoh K, Liu H W, Martin O R. J. Org. Chem., 2008, 73:3103.
[9] Davis B G. Tetrahedron:Asymmetry, 2009, 20:652.
[10] Asano N. Cell. Mol. Life Sci., 2009, 66:1479.
[11] Nash R J, Kato A, Yu C Y, Fleet G W J. Future Med. Chem., 2011, 3:1513.
[12] Horne G, Wilson F X, Tinsley J, Williams D H, Storer R. Drug Discov. Today, 2011, 16:107.
[13] Allan G, Ouadid-Ahidouch H, Sanchez-Fernandez E M, Risquez-Cuadro R, Garcia Fernandez J M, Ortiz-Mellet C, Ahidouch A. Plos One, 2013, 8:e76411.
[14] Sanchez-Fernandez E M, Risquez-Cuadro R, Chasseraud M, Ahidouch A, Mellet C O, Ouadid-Ahidouch H, Fernandez J M G. Chem. Commun., 2010, 46:5328.
[15] Wojtowicz K, Januchowski R, Sosinska P, Nowicki M, Zabel M. Oncology Reports, 2016, 35:2896.
[16] Dowall S D, Bewley K, Watson R J, Vasan S S, Ghosh C, Konai M M, Gausdal G, Lorens J B, Long J, Barclay W, Garcia-Dorival I, Hiscox J, Bosworth A, Taylor I, Easterbrook L, Pitman J, Summers S, Chan-Pensley J, Funnell S, Vipond J, Charlton S, Haldar J, Hewson R, Carroll M W. Viruses-Basel, 2016, 8:277.
[17] De Bruijne J, Weegink C J, Jansen P L M, Reesink H W. Vox Sang., 2009, 97:1.
[18] Hong Y P, Chen C, Guo W Y, Zhao L, Mei F C, Xiang M W, Wang W X. Arch. Med. Res., 2016, 47:436.
[19] Adrian H, David C, Ma C, Paul T. Immunol. Cell Biol., 2015, 93:A10.
[20] Hibberd A D, Clark D A, Trevillian P R, McElduff P. World J. Transplant., 2016, 6:206.
[21] Luan Z, Higaki K, Aguilar-Moncayo M, Ninomiya H, Ohno K, Isabel Garcia-Moreno M, Ortiz Mellet C, Garcia Fernandez J M, Suzuki Y. Chembiochem, 2009, 10:2780.
[22] Li Z H, Li T H, Dai S X, Xie X L, Ma X P, Zhao W, Zhang W M, Li J, Wang P G. ChemBioChem, 2013, 14:1239.
[23] Boyd R E, Lee G, Rybczynski P, Benjamin E R, Khanna R, Wustman B A, Valenzano K J. J. Med. Chem., 2013, 56:2705.
[24] Whitby K, Pierson T C, Geiss B, Lane K, Engle M, Zhou Y, Doms R W, Diamond M S. J. Virol., 2005, 79:8698.
[25] Whitby K, Taylor D, Patel D, Ahmed P, Tyms A S. Antivir. Chem. Chemother., 2004, 15:141.
[26] Rathore A P S, Paradkar P N, Watanabe S, Tan K H, Sung C, Connolly J E, Low J, Ooi E E, Vasudevan S G. Antivir. Res., 2011, 92:453.
[27] Watanabe S, Rathore A P S, Sung C, Lu F, Khoo Y M, Connolly J, Low J, Ooi E E, Lee H S, Vasudevan S G. Antivir. Res., 2012, 96:32.
[28] Sung C, Wei Y, Watanabe S, Lee H S, Khoo Y M, Fan L, Rathore A P S, Chan K W K, Choy M M, Kamaraj U S, Sessions O M, Aw P, de Sessions P F, Lee B, Connolly J E, Hibberd M L, Vijaykrishna D, Wijaya L, Ooi E E, Low J G H, Vasudevan S G. Plos Neglet. Trop. D., 2016, 10:e0004851.
[29] Yoshida E, Kunimoto D, Lee S S, Sherman M, Heathcote J, Enns R. Gastroenterology, 2006, 130:A784.
[30] Kaita K, Yoshida E, Kunimoto D, Anderson F, Morris S, Marotta P, Scully L, Peltekian K, Enns R, Diaz-Mitoma F, Lee S, Worobetz L, Pankovich J, Petersen A K. J. Hepatol., 2007, 46:S56.
[31] Chen L, Lu J, Huang T, Yin J, Wei L, Cai Y D. Plos One, 2014, 9:e107767.
[32] Taylor D L, Sunkara P S, Liu P S, Kang M S, Bowlin T L, Tyms A S. AIDS, 1991, 5:693.
[33] Taylor D L, Kang M S, Brennan T M, Bridges C G, Sunkara P S, Tyms A S. Antimicrob. Agents Chemother., 1994, 38:1780.
[34] Compain P, Martin O R. Iminosugars:From Synthesis to Therapeutic Applications, 1st ed. New York:Wiley-VCH, 2007.
[35] Mehta A, Zitzmann N, Rudd P M, Bock T M, Dwek R A. FEBS Lett., 1998, 430:17.
[36] Overkleeft H S, Renkema G H, Neele J, Vianello P, Hung I O, Strijland A, van der Burg A M, Koomen G J, Pandit U K, Aerts J M F G. J. Biol. Chem., 1998, 273:26522.
[37] Zitzmann N, Mehta A S, Carrouée S, Butters T D, Platt F M, McCauley J, Blumberg B S, Dwek R A, Block T M. Proc. Nat. Acad. Sci. USA, 1999, 96:11878.
[38] Li Q, Ye X S. Isr J. Chem., 2015, 55:336.
[39] Li X L, Zhu Z G, Duan K F, Chen H, Li Z W, Li Z, Zhang P Z. Tetrahedron, 2009, 65:2322.
[40] Godin G, Compain P, Masson G, Martin O R, keda K, Yu L, Asano N. Bioorg. Med. Chem. Lett., 2004, 14:5991.
[41] Yu L, Ikeda K, Kato A, Adachi I, Godin G, Compain P, Martin O R, Asano N. Bioorg. Med. Chem., 2006, 14:7736.
[42] Jakobsen P, Lundbeck J M, Kristiansen M, Breinholt J, Demuth H, Pawlas J, Torres Candela M P, Andersen B, Westergaard N, Lundgren K, Asano N. Bioorg. Med. Chem., 2001, 9:733.
[43] Miles R W, Tyler P C, Furneaux R H, Bagdassarian C K, Schramm V L. Biochemistry, 1998, 37:8615.
[44] Lewandowicz A, Tyler P C, Evans G B, Furneaux R H, Schramm V L. J. Biol. Chem., 2003, 278:31465.
[45] Wang D, Li Y H, Wang Y P, Gao R M, Zhang L H, Ye X S. Bioorg. Med. Chem., 2011, 19:41.
[46] Li X L, Qin Z B, Wang R, Chen H, Zhang P Z. Tetrahedron, 2011, 67:1792.
[47] Begue J P, Bonnet-Delpon D. Actualite Chimique, 2006, 83.
[48] Ojima I, Fluorine in Medicinal Chemistry and Chemical Biology, 1st ed. Wiley-Blackwell:Chichester, 2009.
[49] 李意羡(Li Y X). 中国科学院研究生院博士学位论文(Doctoral Dissertation of the Graduate University of Chinese Academy of Sciences), 2011.
[50] Fustero S, Simón-Fuentes A, Barrio P, Haufe G. Chem. Rev., 2015, 115:871.
[51] Ni C F, Hu M Y, Hu J B. Chem. Rev., 2015, 115:765.
[52] Kajimoto T, Liu K K C, Pederson R L, Zhong Z, Ichikawa Y, Porco J A, Wong C H. J. Am. Chem. Soc., 1991, 113:6187.
[53] Arnone A, Bravo P, Donadelli A, Resnati G. Tetrahedron, 1996, 52:131.
[54] Arnone A, Bravo P, Donadelli A, Resnati G. J. Chem. Soc., Chem. Commun., 1993, 984.
[55] Qiu X L, Qing F L. J. Org. Chem., 2005, 70:3826.
[56] Qiu X L, Qing F L. Bioorg. Med Chem., 2005, 13:277.
[57] Wang R W, Qing F L. Org. Lett., 2005, 7:2189.
[58] Wang R W, Qiu X L, Bols M, Ortega-Caballero F, Qing F L. J. Med. Chem., 2006, 49:2989.
[59] Xu X H, Qiu X L, Zhang X G, Qing F L. J. Org. Chem., 2006, 71:2820.
[60] Chen Q, Qing F L. Tetrahedron, 2007, 63:11965.
[61] Wang B L, Jiang Z X, You Z W, Qing F L. Tetrahedron, 2007, 63:12671.
[62] Xu X H, You Z W, Zhang X G, Qing F L. J. Fluorine Chem., 2007, 128:535.
[63] Yang Y Y, Xu J, You Z W, Xu X H, Qiu X L, Qing F L. Org. Lett., 2007, 9:5437.
[64] Yue X Y, Wu Y Y, Qing F L. Tetrahedron, 2007, 63:1560.
[65] Yue X Y, Qiu X L, Qing F L. J. Fluorine Chem., 2008, 129:866.
[66] Li R J, Bols M, Rousseau C, Zhang X G, Wang R W, Qing F L. Tetrahedron, 2009, 65:3717.
[67] Yang Y, Zheng F, Bols M, Marinescu L G, Qing F L. J. Fluorine Chem., 2011, 132:838.
[68] Yang Y, Zheng F, Qing F L. Tetrahedron, 2011, 67:3388.
[69] Asano N, Ikeda K, Yu L, Kato A, Takebayashi K, Adachi I, Kato I, Ouchi H, Takahata H, Fleet G W J. Tetrahedron:Asymmetry, 2005, 16:223.
[70] Blackburn C M, England D A, Kolkmann F. Chem. Commun., 1981, 930.
[71] Lillelund V H, Jensen H H, Liang X F, Bols M. Chem. Rev., 2002, 102:515.
[72] Biffinger J C, Kim H W, DiMagno S G. ChemBioChem, 2004, 5:622.
[73] Jiang X Y, Xu X H, Qing F L. Chin. Chem. Lett., 2014, 25:1115.
[74] Gautier-Lefebvre I, Behr G B, Guillerm G, Ryder N S. Bioorg. Med. Chem. Lett., 2000, 10:1483.
[75] Gautier-Lefebvre I, Behr G B, Guillerm G, Muzard M. Eur. J. Med. Chem., 2005, 40:1255.
[76] Djebaili M, Behr J B. J. Enzyme Inhib. Med. Chem., 2005, 20:123.
[77] Thaharn W, Bootwicha T, Soorukram D, Kuhakarn C, Prabpai S, Kongsaeree P, Tuchinda P, Reutrakul V, Pohmakotr M. J. Org. Chem., 2012, 77:8465.
[78] Korvorapun K, Soorukram D, Kuhakarn C, Tuchinda P, Reutrakul V, Pohmakotr M. Chem. Asian J., 2015, 10:948.
[79] Ruppert I, Schlich K, Volbach W. Tetrahedron Lett., 1984, 25:2195.
[80] Beckers H, Bürger H, Bursch P, Ruppert I. J. Organomet. Chem., 1986, 316:41.
[81] Prakash G K S, Krishnamurti R, Olah G A. J. Am. Chem. Soc., 1989, 111:393.
[82] Ma J A, Cahard D. J. Fluorine Chem., 2007, 128:975.
[83] Liu X, Xu C, Wang M, Liu Q. Chem. Rev., 2015, 115:683.
[84] Li Y X, Kinami K, Hirokami Y, Kato A, Su J K, Jia Y M, Fleet G W J, Yu C Y. Org. Biomol. Chem., 2016, 14:2249.
[85] Cruz F P d, Newberry S, Jenkinson S F, Wormald M R, Butters T D, Alonzi D S, Nakagawa S, Becq F, Norez C, Nash R J, Kato A, Fleet G W J. Tetrahedron Lett., 2011, 52:219.
[86] Forcella M, Parenti P, Cipolla L, Gregori M, Schirone R, Fusi P, Cardona F, Goti A, Parmeggiani C. Glycobiology, 2010, 20:1186.
[87] Parmeggiani C, Catarzi S, Matassini C, D'Adamio G, Morrone A, Goti A, Paoli P, Cardona F. ChemBioChem, 2015, 16:2054.
[88] Paszkowska J, Fernandez O N, Wandzik I, Boudesoque S, Dupont L, Plantier-Royon R, Behr J B. Eur. J. Org. Chem., 2015, 1198.
[89] Smart B E. J. Fluorine Chem., 2001, 109:3.
[90] Purser S, Moore P R, Swallow S, Gouverneur V. Chem. Soc. Rev., 2008, 37:320.
[91] Matkhalikova S F, Malikov V M, Yunusov S Y. Khim. Prir. Soedin., 1969, 5:30.
[92] Matkhalikova S F, Malikov V M, Yunusov S Y. Khim. Prir. Soedin., 1969, 5:606.
[93] Khanov M T, Sultanov M B, Egorova T A. Farmakol. Alkaloidov Serdech. Glikoyidov., 1971, 210.
[94] Shibano M, Tsukamoto D, Masuda A, Tanaka Y, Kusano G. Chem. Pharm. Bull., 2001, 49:1362.
[95] Tsou E L, Chen S Y, Yang M H, Wang S C, Cheng T R R, Cheng W C. Bioorg. Med. Chem., 2008, 16:10198.
[96] Liu C Y, Meng A G, Zhan H. Acta Academiae Medicinae Militaris Tertiae, 2010, 32:369.
[97] 孟爱国(Meng A G), 刘春艳(Liu C Y), 马红翠(Ma H C). 中国实验方剂学杂志(Chinese Journal of Experimental Traditional Medical Formulae), 2011, 17(16):217.
[98] Li Y X, Iwaki R, Kato A, Jia Y M, Fleet G W J, Zhao X, Xiao M, Yu C Y. Eur. J. Org. Chem., 2016, 1429.
[99] Lee C K, Sim K Y, Zhu J. Tetrahedron, 1992, 48:8541.
[100] Lee C K, Jiang H X, Koh L L, Xu Y. Carbohydr. Res., 1993, 239:309.
[101] Andersen S M, Ebner M, Ekhart C W, Gradnig G, Legler G, Lundt I, Stütz A E, Withers S G, Wrodnigg T. Carbohydr. Res., 1997, 301:155.
[102] Berger A, Dax K, Gradnig G, Grassberger V, Stütz A E, Ungerank M, Legler G, Bause E. Bioorg. Med. Chem. Lett., 1992, 2:27.
[103] Revuelta J, Cicchi S, Goti A, Brandi A. Synthesis, 2007, 485.
[104] Wang W B, Huang M H, Li Y X, Rui P X, Hu X G, Zhang W, Su J K, Zhang Z L, Zhu J S, Xu W H, Xie X Q, Jia Y M, Yu C Y. Synlett, 2010, 3:488.
[105] Zhao W B, Nakagawa S, Kato A, Adachi I, Jia Y M, Hu X G, Fleet G W J, Wilson F X, Horne G, Yoshihara A, Izumori K, Yu C Y. J. Org. Chem., 2013, 78:3208.
[106] Zhu J S, Nakagawa S, Chen W, Adachi I, Jia Y M, Hu X G, Fleet G W J, Wilson F X, Nitoda T, Horne G, van Well R, Kato A, Yu C Y. J. Org. Chem., 2013, 78:10298.
[107] Hu X G, Bartholomew B, Nash R J, Wilson F X, Fleet G W J, Nakagawa S, Kato A, Jia Y M, Well R V, Yu C Y. Org. Lett., 2010, 12:2562.
[108] Zhao H, Kato A, Sato K, Jia Y M, Yu C Y. J. Org. Chem., 2013, 78:7896.
[109] Song Y Y, Kinami K, Kato A, Jia Y M, Li Y X, Fleet G W J, Yu C Y. Org. Biomol. Chem., 2016, 14:5157.
[110] Qian B C, Kamori A, Kinami K, Kato A, Li Y X, Fleet G W J, Yu C Y. Org. Biomol. Chem., 2016, 14:4488.
[111] Liautard V, Christina A E, Desvergnes V, Martin O R. J. Org. Chem., 2006, 71:7337.
[112] Li Y X, Huang M H, Yamashita Y, Kato A, Jia Y M, Wang W B, Fleet G W J, Nash R J, Yu C Y. Org. Biomol. Chem., 2011, 9:3405.
[113] Hendry D, Hough L, Richardson A C. Tetrahedron Lett., 1987, 28:4597.
[114] Pandey G, Dumbre S G, Pal S, Khan M I, Shabab M. Tetrahedron, 2007, 63:4756.
[115] Furneaux R H, Mason J M, Tyler P C. Tetrahedron Lett., 1994, 35:3143.
[116] Vurchio C, Cordero F M, Faggi C, Macchi B, Frezza C, Grelli S, Brandi A. Tetrahedron, 2015, 71:5806.
[117] Cordero F M, Vurchio C, Faggi C, Brandi A. Org. Chem. Front., 2016, 3:1651.
[118] Wu L, Chen P H, Liu G S. Org. Lett., 2016, 18:960.
[119] Thonhofer M, Gonzalez Santana A, Fischer R, Torvisco Gomez A, Saf R, Schalli M, Stütz A E, Withers S G. Carbohydr. Res., 2016, 420:6.
[120] Fan J Q, Ishii S, Asano N, Suzuki Y. Nat. Med., 1999, 5:112.
[121] Li Y X, Shimada Y, Adachi I, Kato A, Jia Y M, Fleet G W J, Xiao M, Yu C Y. J. Org. Chem., 2015, 80:5151.
[122] Li Y X, Shimada Y, Sato K, Kato A, Zhang W, Jia Y M, Fleet G W J, Xiao M, Yu C Y. Org. Lett., 2015, 17:716.
[123] Huang M H, Li Y X, Jia Y M, Yu C Y. Molecules, 2013, 18:6723.
[124] Win-Mason A L, Jongkees S A K, Withers S G, Tyler P C, Timmer M S M, Stocker B L. J. Org. Chem., 2011, 76:9611.
[125] Wang J T, Lin T C, Chen Y H, Lin C H, Fang J M. MedChemComm, 2013, 4:783.
[126] Stocker B L, Jongkees S A K, Win-Mason A L, Dangerfield E M, Withers S G, Timmer M S M. Carbohydr. Res., 2013, 367:29.
[127] Martínez R F, Araújo N, Jenkinson S F, Nakagawa S, Kato A, Fleet G W J. Bioorg. Med. Chem., 2013, 21:4813.
[128] Wu X, Zhang F Y, Zhu J, Song C, Xiong D C, Zhou Y, Cui Y, Ye X S. Chem. Asian J., 2014, 9:2260.
[129] Mattes H, Benezra C. Tetrahedron Lett., 1985, 26:5697.
[130] Petrier C, Luche J L. J. Org. Chem., 1985, 50:910.
[131] Nishimura Y, Kudo T, Kondo S, Takeuchi T. J. Antibiot., 1992, 45:963.
[132] Nishimura Y. Curr. Top. Med. Chem., 2003, 3:575.
[133] Banks R E, Smart B E, Tatlow J C, Organofluorine Chemistry, Principles and Commercial Applications, 1st ed. Plenum:New York, 1994.
[1] Jiangjiexing Wu, Hui Wei. Efficient Design Strategies for Nanozymes [J]. Progress in Chemistry, 2021, 33(1): 42-51.
[2] Xin Yan, Yi-Xian Li, Yue-Mei Jia, Chu-Yi Yu. Glycosylated Iminosugars: Isolation, Synthesis and Biological Activities [J]. Progress in Chemistry, 2019, 31(11): 1472-1508.
[3] Tianzhi Dai, Dequn Sun. Research of Anti-TB Active Compounds [J]. Progress in Chemistry, 2018, 30(11): 1784-1802.
[4] Benzhan Zhu, Linna Xie, Chen Shen, Huiying Gao, Liya Zhu, Li Mao. Chemiluminescence Generation from Haloaromatic Pollutants:Structure-Activity Relationship, Molecular Mechanism and Potential Applications [J]. Progress in Chemistry, 2017, 29(9): 930-942.
[5] Hu Daihua, Chen Wang, Wang Yongji. Synthesis and Structure-Activity Relationship of Active Vitamin D3 Analogues [J]. Progress in Chemistry, 2016, 28(6): 839-859.
[6] Guo Jian, He Yun, Ye Xin-Shan. Design and Discovery of Sialyltransferase Inhibitors [J]. Progress in Chemistry, 2016, 28(11): 1712-1720.
[7] Zhao Lijun, Lei Ming. Computational Chemical Studies on Transthyretin [J]. Progress in Chemistry, 2014, 26(01): 193-202.
[8] Zhao Yongsheng, Zhang Xiangping, Zhao Jihong, Zhang Hongzhong, Kang Xuejing, Dong Feng. Research of QSPR/QSAR for Ionic Liquids [J]. Progress in Chemistry, 2012, 24(07): 1236-1244.
[9] . Structures and Mechanism of Action for Complex Ⅲ Inhibiting-Fungicides [J]. Progress in Chemistry, 2010, 22(09): 1852-1868.
[10] Li Zheng Li Yuanchao. Structural Diversity and Structure-Activity Relationship —— New Drug Research and Development of Tripterygium wilfordii Hook.f. [J]. Progress in Chemistry, 2009, 21(12): 2483-2491.
[11] Zheng Yansheng Mo Qian Liu Zhaoming. The Studies of QSPR/QSAR for Ionic Liquids [J]. Progress in Chemistry, 2009, 21(09): 1772-1781.
[12] Liu Huachen Dong Aijun Gao Chunmei Jiang Yuyang. Structure Modification of Resveratrol and Pharmacological Activity [J]. Progress in Chemistry, 2009, 21(0708): 1500-1506.
[13] . QSAR Study of Endocrine Disrupting Chemicals [J]. Progress in Chemistry, 2009, 21(0203): 335-339.
[14] Zhu Xingyong1 Zhang Wenping2 You Qidong1* Zhang Cang2 Zuo Lijuan2. Antitumor Platinum(Ⅱ) Drugs [J]. Progress in Chemistry, 2008, 20(09): 1324-1334.
[15]

Chen Suting|You Qidong*

. Anticancer Activity of Indolocarbazoles [J]. Progress in Chemistry, 2008, 20(0203): 368-374.