中文
Announcement
More
Progress in Chemistry 2018, Vol. 30 Issue (9): 1434-1444 DOI: 10.7536/PC171238 Previous Articles   Next Articles

• Review •

Oxygen Evolution Catalyst of Solid Polymer Electrolysis

Yadi Liu1, Feng Liu2, Cheng Wang1*, Bo Zhao2, Jianlong Wang1*   

  1. 1. Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China;
    2. Global Energy Interconnection Research Institute Co., Ltd., Beijing 102209, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No. 21573122, 21773136),the National Key Research and Development Program of China (No.2016YFB0101208), and the Beijing Science and Technology Commission Project (No.Z171100002017024).
PDF ( 488 ) Cited
Export

EndNote

Ris

BibTeX

In the process of producing hydrogen by water electrolysis with Solid Polymer Electrolyte(SPE), anodic oxygen evolution reaction(OER) is the rate-determining step of the whole electrochemical reaction. The progress of the state-of-the-art for the SPE technology in terms of oxygen evolution reaction(OER) mechanism, catalyst materials and its synthesis method are recommended. It is pointed out that new detection methods can analyze OER reaction mechanism and study the intermediate activity products at atomic level. Optimization of the traditional synthesis method and the development of the new method can improve the catalysts performance. In addition, introducing high stability, low cost and high activity carrier material can also improve the performance of catalyst and reduce its cost accordingly. It is hoped that our paper will give a clear direction for the future research of anode catalysts and promote the commercialization of the SPE electrolysis.
Contents
1 Introduction
2 SPE catalyst
2.1 OER mechanism
2.2 Catalyst materials
2.3 Preparation methods
3 Conclusion and outlook

CLC Number: 

[1] Haryanto A, Fernando S, Murali N, Adhikari S. Energy & Fuels, 2005, 19:2098.
[2] 衣宝廉(Yi B L). 化学进展(Progress in Chemistry), 1992, 2:123.
[3] Winter C J. International Journal of Hydrogen Energy, 2009, 34:S1.
[4] Barreto L, Makihira A, Riahi K. International Journal of Hydrogen Energy, 2003, 28:267.
[5] Holladay J D, Hu J, King D L, Wang Y. Catalysis Today, 2009, 139:244.
[6] Ghenciu A F. Current Opinion in Solid State and Materials Science, 2002, 6:389.
[7] Schiller G, Henne R, Mohr P, Peinecke V. International Journal of Hydrogen Energy, 1998, 23:761.
[8] Kreuter W, Hofmannz H. International Journal of Hydrogen Energy, 1998, 23:661.
[9] Takata H, Mizuno N, Nishikawa M, Fukada S, Yoshitake M. International Journal of Hydrogen Energy, 2007, 32:371.
[10] Rasten E, Hagen G, Tunold R. Electrochimica Acta, 2003, 48:3945.
[11] Laguna-Bercero M A. Journal of Power Sources, 2012, 203:4.
[12] Brisse A, Schefold J, Zahid M. International Journal of Hydrogen Energy, 2008, 33:5375.
[13] Ursua A, Gandia L M, Sanchis P. Proceedings of the IEEE, 2012, 100:410.
[14] 张文强(Zhang W Q), 于波(Yu B), 陈靖(Chen J), 徐景明(Xu J M). 化学进展(Progress in Chemistry), 2008, 20:778.
[15] Ni M, Leung M, Leung D. International Journal of Hydrogen Energy, 2008, 33:2337.
[16] Carmo M, Fritz D L, Mergel J, Stolten D. International Journal of Hydrogen Energy, 2013, 38:4901.
[17] Weininger J L, Russell R R. J. Electrochem. Soc.:Electrochemical Science and Technology, 1978, 125:1482.
[18] Mamaca N, Mayousse E, Arrii-Clacens S, Napporn T W, Servat K, Guillet N, Kokoh K B. Applied Catalysis B:Environmental, 2012, 111/112:376.
[19] Kötz R, Stucki S. Electrochimica Acta, 1986, 31:1311.
[20] Rozain C, Mayousse E, Guillet N, Millet P. Applied Catalysis B:Environmental, 2016, 182:123.
[21] Bockris J O M. The Journal of Chemical Physics, 1956, 24:817.
[22] Damjanovic A, Dey A, Bockris J O M. Journal of the Electrochemical Society, 1966, 113:739.
[23] Iwakura C, Hirao K, Tamura H. Electrochim Acta, 1977, 22:329.
[24] Kötz R, H J L, Bruesch P, Stucki S. J. Electroanal. Chem., 1983, 150:209.
[25] Hu J M, Zhang J Q, Cao C N. International Journal of Hydrogen Energy, 2004, 29:791.
[26] Lyons M E, Floquet S. PhysChemChemPhys, 2011, 13:5314.
[27] Ye Z G, Meng H M, Chen D, Yu H Y, Huan Z S, Wang X D, Sun D B. Solid State Sciences, 2008, 10:346.
[28] Salazar-Gastélum M I, Lin S W, Pina-Luis G E, Pérez-Sicairos S, Félix-Navarro R M. Journal of the Electrochemical Society, 2016, 163:G37.
[29] Reier T, Nong H N, Teschner D, Schlögl R, Strasser P. Advanced Energy Materials, 2017, 7:1601275.
[30] Miles M H, Thomason M A. J. Electrochem. Soc.:Electrochemical Science and Technology, 1976, 123:1459.
[31] Forgie R, Bugosh G, Neyerlin K C, Liu Z, Strasser P. Electrochemical and Solid-state Letters, 2010, 13:B36.
[32] Chen G, Delafuente D A, Sarangapani S, Mallouk T E. Catalysis Today, 2001, 67:341.
[33] Beer H B. Brit. GB1147442(A), 1965.
[34] Trasatti S. Electrochimica Acta, 1984, 29:1503.
[35] Tahir M, Pan L, Idrees F, Zhang X, Wang L, Zou J J, Wang Z L. Nano Energy, 2017, 37:136.
[36] Siracusano S, Baglio V, Di Blasi A, Briguglio N, Stassi A, Ornelas R, Trifoni E, Antonucci V, Arico A S. International Journal of Hydrogen Energy, 2010, 35:5558.
[37] Cruz J C, Baglio V, Siracusano S, Ornelas R, Ortiz-Frade L, Arriaga L G, Antonucci V, Arico A S. Journal of Nanoparticle Research, 2011, 13:1639.
[38] Lee Y, Suntivich J, May K J, Perry E E, Shao-Horn Y. J. Phys. Chem. Lett., 2012, 3:399.
[39] Takimoto D, Fukuda K, Miyasaka S, Ishida T, Ayato Y, Mochizuki D, Shimizu W, Sugimoto W. Electrocatalysis, 2017, 8:144.
[40] Antolini E. ACS Catalysis, 2014, 4:1426.
[41] Li G F, Yu H M, Song W, Dou M L, Li Y K, Shao Z G, Yi B L. ChemSusChem, 2012, 5:858.
[42] Li G Q, Li S T, Xiao M L, Ge J J, Liu C P, Xing W. Nanoscale, 2017, 9:9291.
[43] Cheng J B, Zhang H M, Chen G B, Zhang Y N. Electrochimica Acta, 2009, 54:6250.
[44] Mattos-Costa F I, Lima-Neto P D, Machado S A S, Avaca L A. Electrochimica Acta, 1998, 44:1515.
[45] De Pauli C P, Trasatti S. Journal of Electroanalytical Chemistry, 1995, 396:161.
[46] Wu X, Tayal J, Basu S, Scott K. International Journal of Hydrogen Energy, 2011, 36:14796.
[47] Li G Q, Yu H M, Yang D L, Chi J, Wang X Y, Sun S C, Shao Z G, Yi B L. Journal of Power Sources, 2016, 325:15.
[48] Morimitsu M, Otogawa R, Matsunaga M. Electrochimica Acta, 2000, 46:401.
[49] Hu J M, Meng H M, Zhang J Q, Cao C N. Corrosion Science, 2002, 44:1655.
[50] Xu L K, Xin Y L, Wang J T. Electrochimica Acta, 2009, 54:1820.
[51] Chen X M, Chen G H. Journal of the Electrochemical Society, 2005, 152:J59.
[52] Santana M H P, De Faria L A, Boodts J F C. Electrochimica Acta, 2004, 49:1925.
[53] Panic V V, Dekanski A B, Mitric M, Milonjic S K, Miskovic-Stankovic V B, Nikolic B Z. PhysChemChemPhys, 2010, 12:7521.
[54] Chen G H, Chen X M, Yue P L. J. Phys. Chem. B, 2002, 106:4364.
[55] Ardizzone S, Bianchi C L, Cappelletti G, Ionita M, Minguzzi A, Rondinini S, Vertova A. Journal of Electroanalytical Chemistry, 2006, 589:160.
[56] Hummelgard C, Karlsson R K B, Backström J, Rahman S M H, Cornell A, Eriksson S, Olin H. Materials Science and Engineering:B, 2013, 178:1515.
[57] Liang Z H, Sun Y F, Fan C M, Hao X G, Sun Y P. Journal of Solution Chemistry, 2009, 38:1119.
[58] Zhang J J, Hu J M, Zhang J Q, Cao C N. International Journal of Hydrogen Energy, 2011, 36:5218.
[59] Cai M, Ruthkosky M S, Merzougui B, Swathirajan S, Balogh M P, Oh S H. Journal of Power Sources, 2006, 160:977.
[60] Kosevi D M, Stopic S, Bulan A, Kintrup J, Weber R, Stevanovi D J, Pani D V, Friedrich B. Advanced Powder Technology, 2017, 28:43.
[61] Lu Z X, Shi Y, Yan C F, Guo C Q, Wang Z D. International Journal of Hydrogen Energy, 2017, 42:3572.
[62] Silva L A D, Alves V A, Castro S C D, Boodts J F C. Colloids and Surfaces, 2000, 170:119.
[63] Rajendran V, Anandan K. Materials Science in Semiconductor Processing, 2012, 15:393.
[64] Liu Q L, Zhang L X, Crozier P A. Applied Catalysis B:Environmental, 2015, 172/173:58.
[65] Hu W, Chen S L, Xia Q H. International Journal of Hydrogen Energy, 2014, 39:6967.
[66] Puthiyapura V K, Mamlouk M, Pasupathi S, Pollet B G, Scott K. Journal of Power Sources, 2014, 269:451.
[67] Vila-Vázquez V, Galván-Valencia M, Ledesma-García J, Arriaga L G, Collins-Martínez V H, Guzmán-Martínez C, Escalante-Garcia I L, Durón-Torres S M. Journal of Applied Electrochemistry, 2015, 45:1175.
[68] Ma L R, Sui S, Zhai Y C. Journal of Power Sources, 2008, 177:470.
[69] Siracusano S, Baglio V, D'urso C, Antonucci V, Aricò A S. Electrochimica Acta, 2009, 54:6292.
[70] Wu X, Scott K. International Journal of Hydrogen Energy, 2011, 36:5806.
[71] Yagi M, Tomita E, Kuwabara T. Journal of Electroanalytical Chemistry, 2005, 579:83.
[72] Adams R, Shriner R L. Platinum Oxide Ⅲ, 1923, 45:2171.
[73] Owe L E, Tsypkin M, Wallwork K S, Haverkamp R G, Sunde S. Electrochimica Acta, 2012, 70:158.
[74] Nguyen T D, Scherer G G, Xu Z J. Electrocatalysis, 2016, 7:420.
[75] Cheng J B, Zhang H M, Ma H P, Zhong H X, Zou Y. International Journal of Hydrogen Energy, 2009, 34:6609.
[76] Kameyama K, Shohji S, Onoue S, Nishimura K, Yahikozawa K, Takasu Y. J. Electrochem. Soc., 1993, 140:1034.
[77] Skulimowska A, Dupont M, Zaton M, Sunde S, Merlo L, Jones D J, Roziere J. International Journal of Hydrogen Energy, 2014, 39:6307.
[78] Kim D H, Park S H, Choi J, Yi M H, Kim H S. Materials Science and Engineering:B, 2015, 201:29.
[79] Ferro S, Rosestolato D, Martínez-Huitle C A, Battisti A D. Electrochimica Acta, 2014, 148:85.
[80] Slavcheva E, Radev I, Bliznakov S, Topalov G, Andreev P, Budevski E. Electrochimica Acta, 2007, 52:3889.
[81] Cherevko S, Geiger S, Kasian O, Kulyk N, Grote J P, Savan A, Shrestha B R, Merzlikin S, Breitbach B, Ludwig A, Mayrhofer K J J. Catalysis Today, 2016, 262:170.
[82] 李静(Li J), 李利军(Li L J), 高艳芳(Gao Y F), 刘进荣(Liu J R). 材料导报(Materis Review), 2011, 25:5.
[83] 李磊(Li L), 刘卫(Liu W), 谢雅典(Xie Y D). 合成化学(Chinese Journal of Synthetic Chemistry), 2017, 25:87.
[84] 陈彰旭(Chen Z X), 郑炳云(Zheng B Y), 李先学(Li X X), 傅明连(Fu M L), 谢署光(Xie S G), 邓超(Deng C), 胡衍华(Hu Y H). 化工进展(Chemical Industry and Engineering Progress), 2010, 29:94.
[85] Satishkumar B C, Govindaraj A, Nath M, Rao C N R. Journal of Materials Chemistry, 2000, 10:2115.
[86] Santala E, Hamalainen J, Lu J, Leskela M, Ritala M. Nanoscience and Nanotechnology Letters, 2009, 1:218.
[87] El Sawy E N, Birss V I. Journal of Materials Chemistry, 2009, 19:8244.
[1] Jing He, Jia Chen, Hongdeng Qiu. Synthesis of Traditional Chinese Medicines-Derived Carbon Dots for Bioimaging and Therapeutics [J]. Progress in Chemistry, 2023, 35(5): 655-682.
[2] Yue Yang, Ke Xu, Xuelu Ma. Catalytic Mechanism of Oxygen Vacancy Defects in Metal Oxides [J]. Progress in Chemistry, 2023, 35(4): 543-559.
[3] Jiaye Li, Peng Zhang, Yuan Pan. Single-Atom Catalysts for Electrocatalytic Carbon Dioxide Reduction at High Current Densities [J]. Progress in Chemistry, 2023, 35(4): 643-654.
[4] Yuewen Shao, Qingyang Li, Xinyi Dong, Mengjiao Fan, Lijun Zhang, Xun Hu. Heterogeneous Bifunctional Catalysts for Catalyzing Conversion of Levulinic Acid to γ-Valerolactone [J]. Progress in Chemistry, 2023, 35(4): 593-605.
[5] Yixue Xu, Shishi Li, Xiaoshuang Ma, Xiaojin Liu, Jianjun Ding, Yuqiao Wang. Surface/Interface Modulation Enhanced Photogenerated Carrier Separation and Transfer of Bismuth-Based Catalysts [J]. Progress in Chemistry, 2023, 35(4): 509-518.
[6] Chunyi Ye, Yang Yang, Xuexian Wu, Ping Ding, Jingli Luo, Xianzhu Fu. Preparation and Application of Palladium-Copper Nano Electrocatalysts [J]. Progress in Chemistry, 2022, 34(9): 1896-1910.
[7] Leyi Wang, Niu Li. Relation Among Cu2+, Brønsted Acid Sites and Framework Al Distribution: NH3-SCR Performance of Cu-SSZ-13 Formed with Different Templates [J]. Progress in Chemistry, 2022, 34(8): 1688-1705.
[8] Qiyue Yang, Qiaomei Wu, Jiarong Qiu, Xianhai Zeng, Xing Tang, Liangqing Zhang. Catalytic Conversion of Bio-Based Platform Compounds to Fufuryl Alcohol [J]. Progress in Chemistry, 2022, 34(8): 1748-1759.
[9] Bin Jia, Xiaolei Liu, Zhiming Liu. Selective Catalytic Reduction of NOx by Hydrogen over Noble Metal Catalysts [J]. Progress in Chemistry, 2022, 34(8): 1678-1687.
[10] Mingjue Zhang, Changpo Fan, Long Wang, Xuejing Wu, Yu Zhou, Jun Wang. Catalytic Reaction Mechanism for Hydroxylation of Benzene to Phenol with H2O2/O2 as Oxidants [J]. Progress in Chemistry, 2022, 34(5): 1026-1041.
[11] Yaoyu Qiao, Xuehui Zhang, Xiaozhu Zhao, Chao Li, Naipu He. Preparation and Application of Graphene/Metal-Organic Frameworks Composites [J]. Progress in Chemistry, 2022, 34(5): 1181-1190.
[12] Yangyang Liu, Zigang Zhao, Hao Sun, Xianghui Meng, Guangjie Shao, Zhenbo Wang. Post-Treatment Technology Improves Fuel Cell Catalyst Stability [J]. Progress in Chemistry, 2022, 34(4): 973-982.
[13] Shujin Shen, Cheng Han, Bing Wang, Yingde Wang. Transition Metal Single-Atom Electrocatalysts for CO2 Reduction to CO [J]. Progress in Chemistry, 2022, 34(3): 533-546.
[14] Hongyu Chu, Tianyu Wang, Chong-Chen Wang. Advanced Oxidation Processes (AOPs) for Bacteria Removal over MOFs-Based Materials [J]. Progress in Chemistry, 2022, 34(12): 2700-2714.
[15] Yuanju Jing, Chun Kang, Yanxin Lin, Jie Gao, Xinbo Wang. MXene-Based Single-Atom Catalysts: Synthesis and Electrochemical Catalysis [J]. Progress in Chemistry, 2022, 34(11): 2373-2385.