中文
Announcement
More
Progress in Chemistry 2018, Vol. 30 Issue (9): 1380-1391 DOI: 10.7536/PC171234 Previous Articles   Next Articles

• Review •

Synthesis and Surface Modifications of Au Nanostars and Their Applications in Biomedical Fields

Xiaowei Cao1,3*, Shuai Chen1, Min Bao1,2,3, Hongcan Shi1,2,3*, Wei Li1,3   

  1. 1. Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China;
    2. Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Medical College, Yangzhou University, Yangzhou 225001, China;
    3. Department of Integrative Traditional & Western Medicine, Medical College, Yangzhou University, Yangzhou 225001, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No.81701825, 81770018), the Natural Science Fund for Colleges and Universities in Jiangsu Province (No.17KJB416012), and the Postdoctoral Science Foundation in Jiangsu Province (No.1701141C).
PDF ( 751 ) Cited
Export

EndNote

Ris

BibTeX

Au nanostars (AuNSs) with the complex three-dimensional structure have become a new type of nanomaterials with a rapid development of nanotechnology. AuNSs have unique physical and chemical properties such as tunable optical properties of localized surface plasmon resonance (LSPR), surface-enhanced Raman scattering (SERS) effect, photothermal properties, and the large surface-to-volume ratio. For this reason, there's great potential for their applications in the fields of nanomaterials and biomedicine. In this article, we firstly evaluate the optical properties of AuNSs and explain their theoretical basis. Then two main methods of preparing AuNSs in recent years are summarized, including seed-mediated synthesis method and one-step method. At the same time, a discussion of the merits and drawbacks of each method is also made. In terms of functionalized probes' assembly, two principal ways of surface modifications are introduced, including silica-coated AuNSs and modification of AuNSs using polymer or biomolecules. In the way of application, the recent progress of AuNSs applied in biomolecular detection, medical imaging, diagnosis and photothermal therapy of tumors, delivery and controlled release of drug is reviewed. In the end, we discuss some problems in the preparation and application of AuNSs. What's more, the future research content and research direction in this field are prospected.
Contents
1 Introduction
2 Optical properties of Au nanostars and their theoretical basis
3 Preparation of Au nanostars
3.1 Seed-mediated growth method
3.2 One-step method
4 Surface modifications of Au nanostars
4.1 Silica-coated Au nanostars
4.2 Modification of Au nanostars using polymer or biomolecules
5 Applications of Au nanostars in biomedical field
5.1 Biomolecular detection
5.2 Medical imaging
5.3 Diagnosis and photothermal therapy of tumors
5.4 Delivery and controlled release of drug
6 Conclusion and outlook

CLC Number: 

[1] Daniel M C, Astruc D. Chem. Rev., 2004, 104:293.
[2] Sun Y G, Xia Y N. Science, 2002, 298:2176.
[3] Lee S J, Morrill A R, Moskovits M. J. Am. Chem. Soc., 2006, 128:2200.
[4] Murphy C J, Gole A M, Hunyadi S E, Orendorff C J. Inorg. Chem., 2006, 45:7544.
[5] Xie J, Lee J Y, Wang D I, Ting Y P. Small, 2007, 3:672.
[6] Chen S, Wang Z L, Ballato J, Foulger S H, Carroll D L. J. Am. Chem. Soc., 2003, 125:16186.
[7] Shao L, Susha A S, Cheung L S, Sau T K, Rogach A L, Wang J F. Langmuir, 2012, 28:8979.
[8] Chirumamilla M, Chirumamilla A, Roberts A S, Zaccaria R P, Angelis F D, Kristensen P K, Krahne R, Bozhevolnyi S I, Pedersen K, Toma A. Adv. Optical Mater., 2017, 5:1600836.
[9] Rodr Díguez-Lorenzo R, Alvarez-Puebla R A, Garc Día de Abajo F J, Liz-Marzán L M. J. Phys. Chem. C, 2010, 114:7336.
[10] Link S, EI-Sayed M A. J. Phys. Chem. B, 1999, 103:3073.
[11] Nelayah J, Kociak M, Stéphan O, García de Abajo F J, Tencé M, Henrard L, Taverna D, Pastoriza-Santos I, Liz-Marzán L M, Colliex C. Nat. Phys., 2007, 3:348.
[12] Senthil K P, Pastoriza-Santos I, Rodríguez-González B, Javier García de A F, Liz-Marzán L M. Nanotechnology, 2008, 19:015606.
[13] Eanmaire D L, Van Duyne R P. Electroanal. Chem., 1977, 84:1.
[14] Moskovits M. Rev. Mod. Phys., 1985, 57:783.
[15] Kneipp K, Kneipp H, Itzkan I, Dasari R R, Feld M S. J. Phys-Conden. Mat., 2002, 14:597.
[16] Yong I P, Hyungsoon I, Hakho L. ACS Bioconj. Chem., 2015, 26:1470.
[17] Rodríguez-Lorenzo L, ílvarez-Puebla R A, Pastoriza-Santos I, Mazzucco S, Stéphan O, Kociak M, Liz-Marzán L M, Garc Día de Abajo F J. J. Am. Chem. Soc., 2009, 131:4616.
[18] Barbosa S, Agrawal A, Rodr Díguez-Lorenzo L, Pastoriza-Santos I, Alvarez-Puebla R A, Kornowski A, Weller H, Liz-Marzan L M. Langmuir, 2010, 26:14943.
[19] Zhu J, Liu M J, Li J J, Zhao J W. Eur. Phys. J. B, Spectrosc., 2009, 40:86.
[20] Li J, Wu J, Zhang X, Liu Y, Zhou D, Sun H Z, Zhang H, Yang B. J. Phys. Chem. C, 2011, 115:3630.
[21] Nalbant Esenturk E, Hight Walker A R. J. Raman Spectrosc., 2009, 40:86.
[22] Minati L, Benetti F, Chiappini Andrea, Speranz G. Colloids and Surfaces A:Physicochem. Eng. Aspects, 2014, 441:623.
[23] Su Q Q, Ma X Y, Dong J, Jiang C Y, Qian W P. ACS Appl. Mater. Interfaces, 2011, 3:1873.
[24] Chen L X, Lv J J, Wang A J, Huang H, Fen J J. Sensor Actuat. B-Chem., 2016, 222:937.
[25] Rodr Díguez-Lorenzo L, Krpetic Z, Barbosa S, Alvarez-Puebla R A, Liz-Marzán L M, Priorc I A, Brust M. Integr. Biol., 2011, 3:922.
[26] Atta S, Tsoulos T V, Fabris L. J. Phys. Chem. C, 2016, 120:20749.
[27] Boca S, Rugina D, Pintea A, Barbu-Tudoran L, Astilean S. Nanotechnology, 2011, 22:055702.
[28] Jokerst J V, Miao Z, Zavaleta C, Cheng Z, Gambhir S S. Small, 2011, 7:625.
[29] Slomiany M G, Dai L, Tolliver L B, Grass G D, Zeng Y P, Toole B P. Clin. Cancer Res., 2009, 15:7593.
[30] Hu C F, Liu Y L, Qin J L, Nie G T, Lei B F, Xiao Y, Zheng M T, Rong J H. ACS Appl. Mater. Inter., 2013, 5:4760.
[31] Leonard K, Ahmmad B, Okamura H, Kurawaki J. Colloid. Surface B, 2017, 82:391.
[32] Wang Y, Yan B, Chen L X. Chem. Rev., 2012, 113:1391.
[33] Fales A M, Liu Y, Fales A M, Li Y L, Liu J, Vo-Dinh T. Anal. Chem., 2013, 85:208.
[34] Xie J P, Zhang Q B, Lee J Y, Wang D I C. ASC Nano, 2008, 2:2473.
[35] Dondapati S K, Sau T K, Hrelescu C, Klar T A, Stefani F D, Feldmann J. ACS Nano, 2010, 4:6318.
[36] Spadavecchia J, Barras A, Lyskawa J, Woisel P, Laure W, Pradier C M, Boukherroub R, Szunerits S. Anal. Chem., 2013, 85:3288.
[37] Li A, Tang L J, Song D, Song S S, Ma W, Xu L G, Kuang H, Wu X L, Liu L Q, Chen X, Xu C L. Nanoscale, 2016, 8:1873.
[38] Kang B, Austin L A, El-Sayed M A. ACS Nano, 2014, 8:4883.
[39] Cao X W, Shan Y B, Tan L Q, Yu X, Bao M, Li W, Shi H C. J. Mater. Chem. B, 2017, 5:5983.
[40] Liu Y, Yuan H K, Kersey F R, Register J K, Parrott M C, Vo Dinh T. Sensors, 2015, 15:3706.
[41] Li M, Banerjee S R, Zheng C, Pomper M G, Barman I. Chem. Sci., 2016, 7:6779.
[42] Dinish U S, Balasundaram G, Chang Y T, Olivo M. Sci. Rep., 2014, 4:4075.
[43] Beqa L, Fan Z, Singh A K, Senapati D, Ray P C. ACS Appl. Mater. Interfaces, 2011, 3:3316.
[44] Cao X W, Shi C W, Lu W B, Zhao H, Wang M, Zhang M Y, Chen X, Dong J, Han X D, Qian W P. J. Nanosci. Nanotechnol., 2016, 16:12161.
[45] Chen M L, Gao Z W, Chen X M, Pang S C, Zhang Y. Talanta, 2018, 182:433.
[46] Chen J, Sheng Z H, Li P H, Wu M X, Zhang N S, Yu X F, Wang Y W, Hu D H, Zheng H R, Wang G P. Nanoscale, 2017, 9:11888.
[47] Liu Y, Ashton J R, Moding E J, Yuan H K, Register J K, Fales A M, Choi J, Whitley M J, Zhao X G, Qi Y, Ma Y, Vaidyanathan G, Zalutsky M R, Kirsch D G, Badea C T, Vo Dinh T. Theranostics, 2015, 5:946.
[48] Paris J L, Mannaris C, Victoria Cabañas M, Carlisle R, Manzano M, Vallet-Regí M, Coussiosc C C. Chem. Eng. J., 2018, 340:2.
[49] Kumari S, Singh R P. Int. J. Biol. Macromol., 2012, 50:878.
[50] Dama D H M, Culverb K S B, Kandela I, Lee R C, Chandra K, Lee H, Mantisc C, Ugolkov A, Mazar A P, Odom T W. Nanomed-Nanotechnol., 2015, 11:671.
[51] Wang F Y, Sun Q Q, Feng B, Xu Z A, Zhang J Y, Xu J, Lu L L, Yu H J, Wang M W, Li Y P, Zhang W. Adv. Healthc. Mater., 2016, 5:2227.
[52] An J, Yang X Q, Cheng K, Song X L, Zhang L, Li C, Zhang X S, Xuan Y, SongY Y, Fang B Y, Hou X L, Zhao Y D, Liu B. ACS Appl. Mater. Interfaces, 2017, 9:41748.
[1] Shunxin Gu, Qin Jiang, Pengfei Shi. Antitumor Activity and Application of Luminescent Iridium(Ⅲ) Complexes [J]. Progress in Chemistry, 2022, 34(9): 1957-1971.
[2] Keqing Wang, Huimin Xue, Chenchen Qin, Wei Cui. Controllable Assembly of Diphenylalanine Dipeptide Micro/Nano Structure Assemblies and Their Applications [J]. Progress in Chemistry, 2022, 34(9): 1882-1895.
[3] Haidi Feng, Lu Zhao, Yunfeng Bai, Feng Feng. The Application of Nanoscale Metal-Organic Frameworks for Tumor Targeted Therapy [J]. Progress in Chemistry, 2022, 34(8): 1863-1878.
[4] Xiaofeng Chen, Kaiyuan Wang, Fangming Liang, Ruiqi Jiang, Jin Sun. Exosomes Drug Delivery Systems and Their Application in Tumor Treatment [J]. Progress in Chemistry, 2022, 34(4): 773-786.
[5] Jiahui Ma, Wei Yuan, Simin Liu, Zhiyong Zhao. Self-Assembly of Small Molecule Modified DNA and Their Application in Biomedicine [J]. Progress in Chemistry, 2022, 34(4): 837-845.
[6] Jiali Wang, Ling Zhu, Chen Wang, Shengbin Lei, Yanlian Yang. Nanotechnology for Detection of Circulating Tumor Cells and Extracellular Vesicles [J]. Progress in Chemistry, 2022, 34(1): 178-197.
[7] Xiaodong Jing, Ying Sun, Bing Yu, Youqing Shen, Hao Hu, Hailin Cong. Rational Design of Tumor Microenvironment Responsive Drug Delivery Systems [J]. Progress in Chemistry, 2021, 33(6): 926-941.
[8] Huifeng Xu, Yongqiang Dong, Xi Zhu, Lishuang Yu. Novel Two-Dimensional MXene for Biomedical Applications [J]. Progress in Chemistry, 2021, 33(5): 752-766.
[9] Yifeng Chen, Cong Wang, Kefeng Ren, Jian Ji. Droplet Microarrays in Biomedical High-Throughput Research [J]. Progress in Chemistry, 2021, 33(4): 543-554.
[10] Jiawei Liu, Jing Wang, Qi Wang, Quli Fan, Wei Huang. Applications of Activatable Organic Photoacoustic Contrast Agents [J]. Progress in Chemistry, 2021, 33(2): 216-231.
[11] Xinyu Wang, Fuping Zhao, Ru Zhang, Ziru Sun, Shengnan Liu, Qingzhi Gao. Development of Hypoxia Inducible Factor-1 Small Molecule Inhibitors as Antitumor Agents [J]. Progress in Chemistry, 2021, 33(12): 2259-2269.
[12] Qixiao Guan, Heze Guo, Hongjing Dou. Nanocarriers Modified by Cell Membrane and Their Applications in Tumor Immunotherapy [J]. Progress in Chemistry, 2021, 33(10): 1823-1840.
[13] Shan Guo, Xiang Zhou. Detection of Circulating Tumor Cell in Vivo:Technology and Application [J]. Progress in Chemistry, 2021, 33(1): 1-12.
[14] Qing Wu, Yiyuan Tang, Miao Yu, Yueying Zhang, Xingmei Li. Stimuli-Responsive DNA Nanostructure Drug Delivery System Based on Tumor Microenvironment [J]. Progress in Chemistry, 2020, 32(7): 927-934.
[15] Yue Yang, Jueyu Wang, Min Zhao, Daizong Cui. Virus-Templated Synthesis of Metal Nanomaterials and Their Application [J]. Progress in Chemistry, 2019, 31(7): 1007-1019.