中文
Announcement
More
Progress in Chemistry 2018, Vol. 30 Issue (4): 325-337 DOI: 10.7536/PC171232 Previous Articles   Next Articles

• Review •

Bioinspired Photo/Electrocatalytic N2 Fixation

Yao Xiao1, Wenjuan Hu1, Yanbiao Ren1, Xu Kang2, Jian Liu1*   

  1. 1. College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 26604;
    2. School of Environment, Harbin Institute of Technology, Harbin 150090, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by Youth Program of the National Thousand Talents Plan of China and the Shandong Provincial Natural Science Foundation,China (No.ZR2018MB018).
PDF ( 2621 ) Cited
Export

EndNote

Ris

BibTeX

N2 fixation, a process that transforms N2 into biologically usable forms, is mainly accomplished by biological and industrial processes, respectively. Biological N2 fixation is carried out by nitrogenase at ambient conditions. Coupled to the hydrolysis of ATP and accompanied by the formation of H2, N2 is reduced to NH3. Industrial N2 fixation is accomplished by Haber-Bosch process, in which N2 is reduced to NH3 efficiently in the presence of iron catalyst and promoter. The process invented more than a century ago is carried out at high temperature and high pressure(400~500 ℃, above 100 atm), which consumes lots of energy, in addition to the large amount of energy consumed in methanol steam reforming to produce hydrogen. Nowadays, people are looking for the next-generation industrial catalyst by taking inspiration from N2 fixation mechanism of nitrogenase. Light-driven(photocatalytic) N2 fixation is very promising especially considering that energy for N2 fixation is ultimately from photosynthesis. In this paper, the recent progress in the field of bioinspired photocatalytic N2 fixation in addition to some research on electrocatalytic N2 fixation are summarized. Last, our perspectives of this field are provided. Although currently there is still no good substitution for catalyst system used in conventional Haber-Bosch process, a review of research progress and experience will provide beneficial implications for future design of efficient catalysts.
Contents
1 Introduction
2 Biological N2 fixation and nitrogenase
2.1 Biological N2 fixation
2.2 N2 fixing mechanism and inspiration of nitrogenase
2.3 Transition metal complex for catalytic N2 fixation
3 Photocatalytic N2 fixation
3.1 Mechanism of photocatalytic N2 fixation
3.2 Synthetic N2 fixing photocatalysts
3.3 Biological hybrids and nitrogenase simulated photocatalysts
3.4 Overview of electrocatalytic N2 fixation
4 Conclusion and outlook

CLC Number: 

[1] Burgess B K, Lowe D J. Chem. Rev., 1996, 96:2983.
[2] Howard J B, Rees D C. Chem. Rev., 1996, 96:2965.
[3] 杨奇(Yang Q), 谢钢(Xie G), 陈三平(Chen S P), 张一凡(Zhang Y F), 郭培宇(Guo P Y), 高胜利(Gao S L). 大学化学(University Chemistry), 2015, 30:33.
[4] Jia H P, Quadrelli E A. Chem. Soc. Rev., 2014, 43:547.
[5] MacKay B A, Fryzuk M D. Chem. Rev., 2004, 104:385.
[6] Hoffman B M, Lukoyanov D, Yang Z Y, Dean D R, Seefeldt L C. Chem. Rev., 2014, 114:4041.
[7] Appl M. Ullmann' s Encyclopedia of Industrial Chemistry, 2000, 3:139.
[8] Dos Santos P C, Fang Z, Mason S W, Setubal J C, Dixon R. BMC Genomics., 2012, 13:162.
[9] Boyd E, Peters J. Front. Microbiol., 2013, 4:1.
[10] Chatt J, Dilworth J R, Richards R L. Chem. Rev., 1978, 78:589.
[11] Cohen J D, Mylvaganam M, Fryzuk M D, Loehr T M. J. Am. Chem. Soc., 1994, 116:9529.
[12] Cri Dc I, Holland P L. J. Am. Chem. Soc., 2016, 138:7200.
[13] 陈全亮(Chen Q L), 陈洪斌(Chen H B), 曹泽星(Cao Z X), 周朝晖(Zhou Z H), 万惠霖(Wan H L), 李颖(Li Y), 李季伦(Li J L). 中国科学:化学(Science China Chemistry), 2014, 44:1849.
[14] Chen C Y, Chen M L, Chen H B, Wang H, Cramer S P, Zhou Z H. J. Inorg. Biochem., 2014, 141:114.
[15] Lowe D J, Fisher K, Thorneley R N. Biochem. J., 1993, 292(Pt 1):93.
[16] Smith B E. Science, 2002, 297:1654.
[17] Hallmen P P, Kästner J. Z. Anorg. Allg. Chem., 2015, 641:118.
[18] Hoffman B M, Dean D R, Seefeldt L C. Acc. Chem. Res., 2009, 42:609.
[19] Hoffman B M, Lukoyanov D, Dean D R, Seefeldt L C. Acc. Chem. Res., 2013, 46:587.
[20] Rees D C, Akif T F, Haynes C A, Walton M Y, Andrade S, Einsle O, Howard J B. Phil. Trans. R. Soc. A, 2005, 363:971.
[21] Lancaster K M, Roemelt M, Ettenhuber P, Hu Y L, Ribbe M W, Neese F, Bergmann U, DeBeer S. Science, 2011, 334:974.
[22] Van der Ham C J M, Cornelis J. M, Koper M T M, Hetterscheid D G H. Chem. Soc. Rev., 2014, 43:5183.
[23] Spatzal T, Perez K A, Einsle O, Howard J B, Rees D C. Science, 2014, 345:1620.
[24] Smith J M, Lachicotte R J, Pittard K A, Cundari T R, Lukatrodgers G, Rodgers K R, Holland P L. J. Am. Chem. Soc., 2001, 123:9222.
[25] Smith J M, Sadique A R, Cundari T R, Rodgers K R, Lukat-Rodgers G, Lachicotte R J, Flaschenriem C J, Vela J, Holland P L. J. Am. Chem. Soc., 2006, 128:756.
[26] Ding K Y, Pierpont A W, Brennessel W W, Lukatrodgers G, Rodgers K R, Cundari T R, Bill E, Holland P L. J. Am. Chem. Soc., 2009, 131:9471.
[27] Cri Dc I, Mercado B Q, Bill E, Vinyard D J, Holland P L. Nature, 2015, 526:96.
[28] Stoian S A, Vela J, Smith J M, Sadique A R, Holland P L, Münck E, Bominaar E L. J. Am. Chem. Soc., 2006, 128:10181.
[29] Venkateswara R P, Holm R H. Chem. Rev., 2004, 35:527.
[30] Henderson R A. Chem. Rev., 2005, 105:2365.
[31] Lee S C, Lo W, Holm R H. Chem. Rev., 2014, 114:3579.
[32] Ogo S. Dalton Trans., 2010, 39:2963.
[33] Yandulov D V, Schrock R R. Science, 2003, 301:76.
[34] Schrock R R. Angew. Chem. Inter. Ed., 2008, 39(43):5512.
[35] Arashiba K, Miyake Y, Nishibayashi Y. Nat. Chem., 2011, 3:120.
[36] Kuriyama S, Arashiba K, Nakajima K, Tanaka H, Kamaru N, Yoshizawa K, Nishibayashi Y. J. Am. Chem. Soc., 2014, 136:9719.
[37] Arashiba K, Kinoshita E, Kuriyama S, Eizawa A, Nakajima K, Tanaka H, Yoshizawa K, Nishibayashi Y. J. Am. Chem. Soc., 2015, 137:5666.
[38] Tanaka H, Arashiba K, Kuriyama S, Sasada A, Nakajima K, Yoshizawa K, Nishibayashi Y. Nat. Commun., 2014, 5:3737.
[39] Kuriyama S, Arashiba K, Nakajima K, Tanaka H, Yoshizawa K, Nishibayashi Y. Chem. Sci., 2015, 6:3940.
[40] Creutz S E, Peters J C. J. Am. Chem. Soc., 2014, 136:1105.
[41] Anderson J S, Cutsail G E, Ⅲ, Rittle J, Connor B A, Gunderson W A, Zhang L M, Hoffman B M, Peters J C. J. Am. Chem. Soc., 2015, 137:7803.
[42] Creutz S E, Peters J C. J. Am. Chem. Soc., 2015, 137:7310.
[43] Castillo T J D, Thompson N B, Peters J C. J. Am. Chem. Soc., 2016, 138:5341.
[44] Anderson J S, Rittle J, Peters J C. Nature, 2013, 501:84.
[45] Li Y, Li Y, Wang B M, Luo Y, Yang D W, Tong P, Zhao J F, Luo L, Zhou Y H, Chen S, Cheng F, Qu J P. Nat. Chem., 2013, 5:320.
[46] Shima T, Hu S W, Luo G, Kang X H, Luo Y, Hou Z M. Science, 2013, 340:1549.
[47] Kitano M, Inoue Y, Yamazaki Y, Hayashi F, Kanbara S, Matsuishi S, Yokoyama T, Kim S W, Hara M, Hosono H. Nat. Chem., 2012, 4:934.
[48] Inoue Y, Kitano M, Kishida K, Abe H, Niwa Y, Sasase M, Fujita Y, Ishikawa H, Yokoyama T, Hara M, Hosono H. ACS Catal., 2016, 6:7577.
[49] Gong Y T, Wu J Z, Kitano M, Wang J J, Ye T N, Li J, Kobayashi Y, Kishida K, Abe H, Niwa Y, Yang H S, Tada T, Hosono H. Nat. Catal., 2018, DOI:10.1038/s41929-017-0022-0
[50] Vojvodic A, Medford A J, Studt F, Abild-Pedersen F, Khan T S, Bligaard T, Nørskov J K. Chem. Phys. Lett., 2014, 598:108.
[51] Wang P K, Chang F, Gao W B, Guo J P, Wu G T, He T, Chen P. Nat. Chem., 2017, 9:64.
[52] Li X F, Li Q K, Cheng J, Liu L, Yan Q, Wu Y, Zhang X H, Wang Z Y, Qiu Q, Luo Y. J. Am. Chem. Soc., 2016, 138:8706.
[53] Ong W J, Tan L L, Ng Y H, Yong S T, Chai S P. Chem. Rev., 2016, 116:7159.
[54] Cao S W, Low J X, Yu J G, Jaroniec M. Adv. Mater., 2015, 27:2150.
[55] Li H J, Zhou Y, Tu W G, Ye J H, Zou Z G. Adv. Funct. Mater., 2015, 25:998.
[56] Putri L K, Ong W J, Wei S C, Chai S P. Appl. Surf. Sci., 2015, 358:2.
[57] Li X, Yu J G, Jaroniec M. Chem. Soc. Rev., 2016, 45:2603.
[58] Low J X, Yu J G, Jaroniec M, Wageh S, Al-Ghamdi A A. Adv. Mater., 2017, 29:1601694.
[59] Putri L K, Tan L L, Ong W J, Chang W S, Chai S P. Appl. Mater. Today, 2016, 4:9.
[60] Fuertes A. Mater. Horiz., 2015, 2:453.
[61] Sivula K, Krol R V D. Nat. Rev. Mater, 2016, 1:15010.
[62] Tachibana Y, Vayssieres L, Durrant J R. Nat. Photonics, 2012, 6:511.
[63] Roger I, Shipman M A, Symes M D. Nat. Rev. Chem., 2017, 1:0003.
[64] Kessler F K, Zheng Y, Schwarz D, Merschjann C, Schnick W, Wang X C, Bojdys M J. Nat. Rev. Mater, 2017, 2:1.
[65] Li H, Li J, Ai Z H, Jia F L, Zhang L Z. Angew. Chem. Int. Ed., 2017, 57:122.
[66] Schrauzer G N, Guth T D. J. Am. Chem. Soc., 1977, 99(22):7189.
[67] Bourgeois S, Diakite D, Perdereau M. Reactivity of Solids, 1988, 6:95.
[68] Hirakawa H, Hashimoto M, Shiraishi Y, Hirai T. J. Am. Chem. Soc., 2017, 139:10929.
[69] Kisch H. Chemistry, 2011, 9:561.
[70] Augugliaro V, D'Alba F, Rizzuti L, Schiavello M, Sclafani A. Int. J. Hydrogen Energy, 1982, 7:851.
[71] Zhao W R, Zhang J, Zhu X, Zhang M, Tang J, Tan M, Wang Y. Appl. Catal. B, 2014, 144:468.
[72] Ranjit K T, Varadarajan T K, Viswanathan B. J. Photochem. Photobiol. A, 1996, 96:181.
[73] Oshikiri T, Ueno K, Misawa H. Angew. Chem. Int. Ed., 2014, 53:9802.
[74] Oshikiri T, Ueno K, Misawa H. Angew. Chem. Int. Ed., 2016, 55:3942.
[75] Mao C L, Yu L H, Li J, Zhao J C, Zhang L Z. Appl. Catal., B, 2018, 224:612.
[76] Tennakone K, Thaminimulla C T K, Bandara J M S. J. Photochem. Photobiol. A, 1992, 68:131.
[77] Tennakone K, Ileperuma O A, Thaminimulla C T K, Bandara J M S. J. Photochem. Photobiol. A, 1992, 66:375.
[78] Endoh E, Leland J K, Bard A J. J.Phys.Chem., 1986, 90:6223.
[79] Li X M, Wang W Z, Jiang D, Sun S M, Zhang L, Sun X. Chem. Eur. J., 2016, 22:13819.
[80] Tennakone K, Wickramanayake S, Fernando C A N, Ileperuma O A, Punchihewa S. J. Chem. Soc. Chem.Commun., 1987, 14:1078.
[81] Hao Y C, Dong X L, Zhai S R, Ma H C, Wang X Y, Zhang X F. Chem. Eur. J., 2016, 22:18722.
[82] Ye L Q, Han C Q, Ma Z Y, Leng Y M, Li J, Ji X X, Bi D Q, Xie H Q, Huang Z X. Chem. Eng. J., 2017, 307:311.
[83] Miyama H, Fujii N, Nagae Y. Chem. Phys. Lett., 1980, 74:523.
[84] Khan M M T, Rao N N. J. Mol. Catal., 1990, 58:323.
[85] Khan M M T, Bhardwaj R C, Bhardwaj C. Angew. Chem. Int. Ed., 1988, 27:923.
[86] Li H, Shang J, Ai Z, Zhang L. J. Am. Chem. Soc., 2015, 137:6393.
[87] Hu S, Chen X, Li Q, Zhao Y, Mao W. Catal. Sci. Technol., 2016, 6:5884.
[88] Sun S M, Li X M, Wang W Z, Zhang L, Sun X. Appl. Catal., B, 2017, 200:323.
[89] Zhu D, Zhang L H, Ruther R E, Hamers R J. Nat. Mater., 2013, 12:836.
[90] Christianson J R, Zhu D, Hamers R J, Schmidt J R. J. Phys. Chem. B, 2014, 118:195.
[91] Bandy J A, Zhu D, Hamers R J. Diam. Relat. Mater., 2016, 64:34.
[92] Cheng C L, Flamarique I N. Nature, 2004, 428:279.
[93] Dong G H, Ho W K, Wang C Y. J. Mater. Chem. A, 2015, 3:23435.
[94] Li S J, Chen X, Hu S Z, Li Q, Bai J, Wang F. RSC Adv., 2016, 6:45931.
[95] Wu G, Gao Y, Zheng B H. Ceram. Int., 2016, 42:6985.
[96] Hu S Z, Chen X, Li Q, Li F Y, Fan Z P, Wang H, Wang Y J, Zheng B H, Wu G. Appl. Catal. B, 2017, 201:58.
[97] Lu Y H, Yang Y, Zhang T F, Ge Z, Chang H C, Xiao P S, Xie Y Y, Hua L, Li Q Y, Li H Y, Ma B, Guan N J, Ma Y F, Chen Y S. ACS Nano, 2016, 10:10507.
[98] Muataz A, Zhou F L, Chen K, Christopher K, Xiao C L, Laure B, Zhang X Y, MacFarlane D R. Nat. Commun., 2016, 7:11335.
[99] Zhao Y F, Zhao Y X, Waterhouse G I N, Zheng L R, Cao X Z, Teng F, Wu L Z, Tung C H, O'Hare D, Zhang T R. Adv. Mater., 2017, 29:1703828.
[100] Brown K A, Harris D F, Wilker M B, Rasmussen A, Khadka N, Hamby H, Keable S, Dukovic G, Peters J W, Seefeldt L C, King P W. Science, 2016, 352:448.
[101] Lane R W, Ibers J A, Frankel R B, Holm R H. Proc. Natl. Acad. Sci., 1975, 72:2868.
[102] Mayerle J J, Frankel R B, Holm R H, Ibers J A, Phillips W D, Weiher J F. Proc. Natl. Acad. Sci., 1973, 70:2429.
[103] Palermo R E, Singh R, Bashkin J K, Holm R H. J. Am. Chem. Soc.,1984,106(9):2600.
[104] Armstrong W H, Mascharak P K, Holm R H. J. Am. Chem. Soc., 1982, 104(6):4373.
[105] Demadis K D, Malinak S M, Coucouvanis D. Inorg. Chem., 1996, 35:4038.
[106] Broda H, Tuczek F. Angew. Chem. Int. Ed., 2014, 53:632.
[107] Liu J, Kelley M S, Wu W Q, Banerjee A, Douvalis A P, Wu J S, Zhang Y B, Schatz G C, Kanatzidis M G. Proc. Natl. Acad. Sci., 2016, 113:5530.
[108] Tamelen E E V, Akermark B. J. Am. Chem. Soc., 1968, 90:4492.
[109] Sclafani A, Augugliaro V, Schiavelli M. J. Electrochem. Soc., 1983, 130(3):734.
[110] Becker J Y, Avraham S, Posin B. J. Electroanal. Chem. Interfacial Electrochem., 1987, 230:143.
[111] Becker J Y, Avraham S. J. Electroanal. Chem. Interfac., 1990, 280:119.
[112] Becker J Y, Posin B. J. Electroanal. Chem. Interfac., 1988, 250:385.
[113] Kordali V, Kyriacou G, Lambrou C. Chem. Commun., 2000, 1673.
[114] Li F F, Licht S. Inorg. Chem., 2014, 53:10042.
[115] Licht S, Cui B C, Wang B H, Li F F, Lau J, Liu S Z. Science, 2014, 345:637.
[116] Lan R, Alkhazmi K A, Amar I A, Tao S W. Appl. Catal., B, 2014, s152/153:212.
[117] Lan R, Irvine J T S, Tao S W. Sci. Rep., 2013, 3:1145.
[118] Abghoui Y, Garden A L, Hlynsson V F, Bjorgvinsdottir S, Olafsdottir H, Skúlason E. Phys. Chem. Chem. Phys., 2015, 17:4909.
[119] Zhao J X, Chen Z F. J. Am. Chem. Soc., 2017, 139:12480.
[120] Shi M M, Bao D, Wulan B R, Li Y H, Zhang Y F, Yan J M, Jiang Q. Adv. Mater., 2017, 29:1606550.
[121] Milton R D, Abdellaoui S, Khadka N, Dean D R, Leech D, Seefeldt L C, Minteer S D. Energ. Environ. Sci., 2016, 9:2550.
[122] Milton R D, Cai R, Abdellaoui S, Leech D, De Lacey A L, Pita M, Minteer S D. Angew. Chem. Int. Ed., 2017, 56:2680.
[123] Paengnakorn P, Ash P A, Shaw S, Danyal K, Chen T, Dean D R, Seefeldt L C, Vincent K A. Chem. Sci., 2017, 8:1500.
[124] Marnellos G, Stoukides M. Science, 1998, 282:98.
[125] Köleli F, Röpke T. Appl. Catal. B, 2006, 62:306.
[126] Köleli F, Kayan D B. J. Electroanal. Chem., 2010, 638:119.
[127] Kim K, Yoo C Y, Kim J N, Yoon H C, Han J I. J. Electrochem. Soc., 2016, 163:1523.
[128] Ma J L, Bao D, Shi M M, Yan J M, Zhang X B. Chemistry, 2017, 2:525.
[129] Murakami T, Nishikiori T, Nohira T, Ito Y. J. Am. Chem. Soc., 2003, 125:334.
[130] Singh A R, Rohr B A, Schwalbe J A, Cargnello M, Chan K, Jaramillo T F, Chorkendorff I, Nørskov J K. ACS Catal., 2017, 7:706.
[131] Chen G F, Cao X, Wu S, Zeng X, Ding L X, Zhu M, Wang H. J. Am. Chem. Soc., 2017, 139:9771.
[132] Kim K, Lee N, Yoo C Y, Kim J N, Yoon H C, Han J I. J. Electrochem. Soc., 2016, 163:F610.
[133] Upham D C, Agarwal V, Khechfe A, Snodgrass Z R, Gordon M J, Metiu H, McFarland E W. Science, 2017, 358:917.
[1] Yixue Xu, Shishi Li, Xiaoshuang Ma, Xiaojin Liu, Jianjun Ding, Yuqiao Wang. Surface/Interface Modulation Enhanced Photogenerated Carrier Separation and Transfer of Bismuth-Based Catalysts [J]. Progress in Chemistry, 2023, 35(4): 509-518.
[2] Senlin Tang, Huan Gao, Ying Peng, Mingguang Li, Runfeng Chen, Wei Huang. Non-Radiative Recombination Losses and Regulation Strategies of Perovskite Solar Cells [J]. Progress in Chemistry, 2022, 34(8): 1706-1722.
[3] Yawei Liu, Xiaochun Zhang, Kun Dong, Suojiang Zhang. Research of Condensed Matter Chemistry on Ionic Liquids [J]. Progress in Chemistry, 2022, 34(7): 1509-1523.
[4] Xumin Wang, Shuping Li, Renjie He, Chuang Yu, Jia Xie, Shijie Cheng. Quasi-Solid-State Conversion Mechanism for Sulfur Cathodes [J]. Progress in Chemistry, 2022, 34(4): 909-925.
[5] Xiangrui Kong, Jing Dou, Shuzhen Chen, Bingbing Wang, Zhijun Wu. Progress of Synchrotron-Based Research on Atmospheric Science [J]. Progress in Chemistry, 2022, 34(4): 963-972.
[6] Xin Pang, Shixiang Xue, Tong Zhou, Hudie Yuan, Chong Liu, Wanying Lei. Advances in Two-Dimensional Black Phosphorus-Based Nanostructures for Photocatalytic Applications [J]. Progress in Chemistry, 2022, 34(3): 630-642.
[7] Minglong Lu, Xiaoyun Zhang, Fan Yang, Lian Wang, Yuqiao Wang. Surface/Interface Modulation in Oxygen Evolution Reaction [J]. Progress in Chemistry, 2022, 34(3): 547-556.
[8] Gang Lin, Yuanyuan Zhang, Jian Liu. Bioinspired Photo/(Electro)-Catalytic NADH Regeneration [J]. Progress in Chemistry, 2022, 34(11): 2351-2360.
[9] Long Chen, Shaobo Huang, Jingyi Qiu, Hao Zhang, Gaoping Cao. Polymer Electrolyte/Anode Interface in Solid-State Lithium Battery [J]. Progress in Chemistry, 2021, 33(8): 1378-1389.
[10] Jiasheng Lu, Jiamiao Chen, Tianxian He, Jingwei Zhao, Jun Liu, Yanping Huo. Inorganic Solid Electrolytes for the Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(8): 1344-1361.
[11] Xiaolu Liu, Yuxiao Geng, Ran Hao, Yuping Liu, Zhongyong Yuan, Wei Li. Electrocatalytic Nitrogen Reduction Reaction under Ambient Condition: Current Status, Challenges, and Perspectives [J]. Progress in Chemistry, 2021, 33(7): 1074-1091.
[12] Wentao Li, Hai Zhong, Yaohua Mai. In-Situ Polymerization Electrolytes for Lithium Rechargeable Batteries [J]. Progress in Chemistry, 2021, 33(6): 988-997.
[13] Suye Lv, Liang Zou, Shouliang Guan, Hongbian Li. Application of Graphene in Neural Activity Recording [J]. Progress in Chemistry, 2021, 33(4): 568-580.
[14] Shumin Cheng, Lin Du, Xiuhui Zhang, Maofa Ge. Application of Langmuir Monolayers in the Investigation of Surface Properties of Sea Spray Aerosols [J]. Progress in Chemistry, 2021, 33(10): 1721-1730.
[15] Weijia Zhang, Xueguang Shao, Wensheng Cai. Molecular Simulation of the Antifreeze Mechanism of Antifreeze Proteins [J]. Progress in Chemistry, 2021, 33(10): 1797-1811.