Progress in Chemistry 2018, Vol. 30 Issue (9): 1392-1402 DOI: 10.7536/PC171228 Previous Articles   Next Articles

• Review •

Neurotoxicological Effects of Nanosilver

Bingjie Zhang1,2, Qian S. Liu1,2, Qunfang Zhou1,2*, Jianqing Zhang3, Guibin Jiang1,2   

  1. 1. State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China;
    2. College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China;
    3. Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No.21477153, 21461142001, 21621064), the Chinese Academy of Sciences(No.14040302, QYZDJ-SSW-DQC017), and the Sanming Project of Medicine in Shenzhen(No.SZSM201811070).
PDF ( 618 ) Cited




Nanosilver is one of the most commercialized nanomaterials in the world. Due to its unique surface plasma resonance performance and excellent antibacterial activities, nanosilver has been widely used in many fields, such as medical area, health care, industrial products and our daily supplies. Meanwhile, the increasing application of nanosilver has drawn more and more attention to its biosafety. Previous toxicological studies have revealed diverse deleterious effects nanosilver may cause, wherein, neurotoxicity is highly concerned. This review mainly focuses on the neurotoxicological effects of nanosilver, and three aspects, including the bioaccumulation of nanosilver in brain and its penetration routes, neurotoxicological effects and the underlying molecular mechanisms, and the influencing factors, are comprehensively discussed. The administration of nanosilver through diverse ways could cause brain silver accumulation, and its penetration routes to the brain were mainly involved with the direct nasal olfactory nerve transfer and the translocation of the blood-brain barrier. The neurotoxicological effects of nanosilver were evidenced by neurobehavioral changes in the exposed animals, histopathological alteration in the brain or cellular morphological changes in neurons and neuroglia cells, and the disturbance in the neurontransmitter secretion. The underlying mechanisms were related with oxidative damage and inflammatory responses. The factors, including particle size, surface coating and silver ion release, would potentially determine nanosilver induced neurotoxicity. Finally, the existing problems in neurotoxicological studies on nanosilver are pointed out, and the future perspectives in this area are proposed. The review would be of great help to risk assessment of the production, application and disposal of nanosilver.
1 Introduction
1.1 Overview
1.2 The synthesis of nanosilver
1.3 The environmental release of nanosilver
1.4 The toxicological effects of nanosilver
2 The bioaccumulation of nanosilver in brain and its penetration routes
2.1 The bioaccumulation of nanosilver in brain
2.2 The penetration routes of nanosilver to brain
3 The neurotoxicological effects of nanosilver and its molecular mechanisms
3.1 Neurobehavioral changes
3.2 Histopathological effects
3.3 Neurotransmitter changes
3.4 The underlying molecular mechanisms
4 The key factors influencing the neurotoxicity of nanosilver
4.1 Particle size
4.2 Surface coating
4.3 Release of silver ions
5 Conclusion and perspective

CLC Number: 

[1] Chen X, Schluesener H J. Toxicol. Lett., 2008, 176:1.
[2] Vance M E, Kuiken T, Vejerano E P, McGinnis S P, Hochella M F, Rejeski D, Hull M S. Beilstein J. Nanotechnol., 2015, 6:1769.
[3] Anjugam M, Vaseeharan B, Iswarya A, Divya M, Prabhu N M, Sankaranarayanan K. Microbial Pathogenesis, 2018, 115:31.
[4] He C, Liu L, Fang Z, Li J, Guo J, Wei J. Ultrasonics Sonochemistry, 2014, 21:542.
[5] Lerner M I, Pervikov A V, Glazkova E A, Svarovskaya N V, Lozhkomoev A S, Psakhie S G. Powder Technology, 2016, 288:371.
[6] Pathrose B, Nampoori V P N, Radhakrishnan P, Sahira H, Mujeeb A. Optik-International Journal for Light and Electron Optics, 2016, 127:3684.
[7] Raudonyte-Svirbutaviciene E, Neagu A, Vickackaite V, Jasulaitiene V, Zarkov A, Tai C W, Katelnikovas A. Journal of Photochemistry and Photobiology A:Chemistry, 2018, 351:29.
[8] Ping Y, Zhang J, Xing T L, Chen G Q, Tao R, Choo K H. Journal of Industrial and Engineering Chemistry, 2018, 58:74.
[9] Rivera-Rangel R D, González-Muñoz M P, Avila-Rodriguez M, Razo-Lazcano T A, Solans C. Colloids and Surfaces A, 2018, 536:60.
[10] Jogaiah S, Kurjogi M, Abdelrahman M, Hanumanthappa N, Tran L S P. Arabian Journal of Chemistry, 2017, DOI:10.1016/j.arabjc.2017.12.002.
[11] Quester K, Avalos-Borja M, Castro-Longoria E. Journal of Biomaterials and Nanobiotechnology, 2016, 7(2):8.
[12] Saravanan M, Barik S K, MubarakAli D, Prakash P, Pugazhendhi A. Microbial Pathogenesis, 2018, 116:221.
[13] Singh J, Mehta A, Rawat M, Basu S. Journal of Environmental Chemical Engineering, 2018, 6:1468.
[14] Sangaonkar G M, Pawar K D. Colloids and Surfaces B:Biointerfaces, 2018, 164:210.
[15] Ahluwalia V, Elumalai S, Kumar V, Kumar S, Sangwan R S. Microbial Pathogenesis, 2018, 114:402.
[16] Zeng J, Zheng Y Q, Rycenga M, Tao J, Li Z Y, Zhang Q, Zhu Y M, Xia Y N. Journal of the American Chemical Society, 2010, 132:8552.
[17] Khodashenas B, Ghorbani H R. Arabian Journal of Chemistry, 2015, DOI:10.1016/j.arabjc.2014.12.014.
[18] Zhang Q, Li W Y, Wen L P, Chen J Y, Xia Y N. Chemistry, 2010, 16:10234.
[19] Pietrobon B, McEachran M, Kitaev V. ACS Nano, 2009, 3:21.
[20] Pongrac I M, Ahmed L B, Mlinari D H, Jurasin D D, Pavi Dcc D I, Marjanovi D Cermak A M, Mili D M, Gajovi D S, Vinkovi D Vr Dc ek I. Journal of Trace Elements in Medicine and Biology, 2018, 50:684.
[21] Ren J T, Tilley R D. Journal of the American Chemical Society, 2007, 129:3287.
[22] Long Y M, Hu L G, Yan X T, Zhao X C, Zhou Q F, Cai Y, Jiang G B. International Journal of Nanomedicine, 2017, 12:3193.
[23] McShan D, Ray P C, Yu H T. J. Food Drug Anal., 2014, 22:116.
[24] Gottschalk F, Sonderer T, Scholz R W, Nowack B. Environmental Science & Technology, 2009, 43:9216.
[25] Pachapur V L, Dalila Larios A, Cledón M, Brar S K, Verma M, Surampalli R Y. Science of the Total Environment, 2016, 563/564:933.
[26] Unrine J M, Colman B P, Bone A J, Gondikas A P, Matson C W. Environ. Sci. Technol., 2012, 46:6915.
[27] Calder A J, Dimkpa C O, McLean J E, Britt D W, Johnson W, Anderson A J. Sci. Total. Environ., 2012, 429:215.
[28] Tang J L, Xiong L, Wang S, Wang J Y, Liu L, Li J G, Yuan F Q, Xi T F. Journal of Nanoscience and Nanotechnology, 2009, 9:4924.
[29] Kim Y S, Kim J S, Cho H S, Rha D S, Kim J M, Park J D, Choi B S, Lim R, Chang H K, Chung Y H, Kwon I H, Jeong J, Han B S, Yu I J. Inhal. Toxicol., 2008, 20:575.
[30] Sung J H, Ji J H, Park J D, Yoon J U, Kim D S, Jeon K S, Song M Y, Jeong J, Han B S, Han J H, Chung Y H, Chang H K, Lee J H, Cho M H, Kelman B J, Yu I J. Toxicol. Sci., 2009, 108:452.
[31] Kulthong K, Maniratanachote R, Kobayashi Y, Fukami T, Yokoi T. Xenobiotica, 2012, 42:854.
[32] El Mahdy M M, Eldin T A S, Aly H S, Mohammed F F, Shaalan M I. Experimental and Toxicologic Pathology, 2015, 67:21.
[33] Hudecova A, Hasplova K, Miadokova E, Magdolenova Z, Rinna A, Collins A R, Galova E, Vaculcikova D, Gregan F, Dusinska M. Cell Biochemistry and Function, 2012, 30:101.
[34] Elle R E, Gaillet S, Vide J, Romain C, Lauret C, Rugani N, Cristol J P, Rouanet J M. Food and Chemical Toxicology, 2013, 60:297.
[35] Kaewamatawong T, Banlunara W, Maneewattanapinyo P, Thammachareon C, Ekgasit S. Journal of Environmental Pathology Toxicology and Oncology, 2014, 33:59.
[36] Liu H L, Yang D F, Yang H L, Zhang H S, Zhang W, Fang Y J, Lin Z Q, Tian L, Lin B C, Yan J, Xi Z G. Journal of Hazardous Materials, 2013, 248:478.
[37] Scoville D K, Botta D, Galdanes K, Schmuck S C, White C C, Stapleton P L, Bammler T K, MacDonald J W, Altemeier W A, Hernandez M, Kleeberger S R, Chen L C, Gordon T, Kavanagh T J. FASEB Journal:Official Publication of the Federation of American Societies for Experimental Biology, 2017, 31:4600.
[38] Galbiati V, Cornaghi L, Gianazza E, Potenza M A, Donetti E, Marinovich M, Corsini E. Food and Chemical Toxicology, 2018, 112:363.
[39] Ema M, Okuda H, Gamo M, Honda K. Reproductive Toxicology, 2017, 67:149.
[40] Lafuente D, Garcia T, Blanco J, Sánchez D J, Sirvent J J, Domingo J L, Gómez M. Reproductive Toxicology, 2016, 60:133.
[41] Han J W, Jeong J K, Gurunathan S, Choi Y J, Das J, Kwon D N, Cho S G, Park C, Seo H G, Park J K, Kim J H. Nanotoxicology, 2016, 10:361.
[42] Amr El-Nouri M, Osama, Azmy M, Awatif, Ibraheim Elshal O, Ragab A, Hassan Ragab M, Elsherbini A. Study of the Effects of Silver Nanoparticles Exposure on the Ovary of Rats, 2013.
[43] Orbea A, González-Soto N, Lacave J M, Barrio I, Cajaraville M P. Comparative Biochemistry and Physiology Part C:Toxicology & Pharmacology, 2017, 199:59.
[44] Cambier S, Rogeberg M, Georgantzopoulou A, Serchi T, Karlsson C, Verhaegen S, Iversen T G, Guignard C, Kruszewski M, Hoffmann L, Audinot J N, Ropstad E, Gutleb A C. Science of the Total Environment, 2018, 610/611:972.
[45] Yoo M H, Rah Y C, Choi J, Park S, Park H C, Oh K H, Lee S H, Kwon S Y. International Journal of Pediatric Otorhinolaryngology, 2016, 83:168.
[46] Sayed A E D H, Soliman H A M. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 2017, 822:34.
[47] Glinski A, Liebel S, Pelletier E, Voigt C L, Randi M A, Campos S X, Oliveira Ribeiro C A, Filipak Neto F. Toxicol. Mech. Methods, 2016, 26:251.
[48] Kim I, Lee B T, Kim H A, Kim K W, Kim S D, Hwang Y S. Chemosphere, 2016, 143:99.
[49] Miranda R R, Bezerra A G, Oliveira Ribeiro C A, Randi M A F, Voigt C L, Skytte L, Rasmussen K L, Kjeldsen F, Filipak Neto F. Toxicology in Vitro, 2017, 40:134.
[50] Kanazawa T, Akiyama F, Kakizaki S, Takashima Y, Seta Y. Biomaterials, 2014, 35:4247.
[51] Sharma H S, Sharma A. Nanomedicine (London, England), 2010, 5:533.
[52] 王云(Wang Y), 丰伟悦(Feng W Y), 赵宇亮(Zhao Y L), 柴之芳(Chai Z F). 中国科学B辑:化学(Science in China Series B:Chemistry), 2009, 106.
[53] Wen R X, Yang X X, Hu L G, Sun C, Zhou Q F, Jiang G B. Journal of Applied Toxicology, 2016, 36:445.
[54] Lee J H, Kim Y S, Song K S, Ryu H R, Sung J H, Park J D, Park H M, Song N W, Shin B S, Marshak D, Ahn K, Lee J E, Yu I J. Particle and Fibre Toxicology, 2013, 10.
[55] Skalska J, Frontczak-Baniewicz M, Struzynska L. Neurotoxicology, 2015, 46:145.
[56] 薛玉英(Xue Y Y), 唐萌(Tang M). 东南大学学报(自然科学版)(Journal of Southeast University(Natural Science)), 2009, 1315.
[57] Lee Y, Choi J, Kim P, Choi K, Kim S, Shon W, Park K. Toxicol. Res., 2012, 28:139.
[58] Donaldson K, Stone V, Tran C L, Kreyling W, Borm P J. Occup. Environ. Med., 2004, 61:727.
[59] 徐明(Xu M), 王哲(Wang Z), 刘思金(Liu S J). 中国材料进展(Rare Metals Letters), 2016, 28.
[60] 滕傲雪(Teng A X). 微量元素与健康研究(Studies of Trace Elements and Health), 2013, 65.
[61] Lee J H, Mun J, Park J D, Yu I J. Nanotoxicology, 2012, 6:667.
[62] Kao Y Y, Cheng T J, Yang D M, Wang C T, Chiung Y M, Liu P S. Journal of Molecular Neuroscience, 2012, 48:464.
[63] Mistry A, Stolnik S, Illum L. Int. J. Pharm., 2009, 379:146.
[64] Leite P E, Pereira M R, Granjeiro J M. Toxicol In Vitro, 2015, 29:1653.
[65] 秦伟伟(Qin W W), 修瑞娟(Xiu R J), 史晓瑞(Shi X R). 国际脑血管病杂志(International Journal of Cerebrovascular Diseases), 2010, 18:711.
[66] Nuriya M, Shinotsuka T, Yasui M. Cereb Cortex, 2013, 23:2118.
[67] Chen I C, Hsiao I L, Lin H C, Wu C H, Chuang C Y, Huang Y J. Environ. Toxicol. Pharmacol., 2016, 47:108.
[68] 汤京龙(Tang J L), 王硕(Wang S), 刘丽(Liu L), 王春仁(Wang C R), 奚廷斐(Xi Y F). 无机化学学报(Chinese Journal of Inorganic Chemistry), 2013, 1025.
[69] Trickler W J, Lantz S M, Murdock R C, Schrand A M, Robinson B L, Newport G D, Schlager J J, Oldenburg S J, Paule M G, Slikker W, Hussain S M, Ali S F. Toxicol. Sci., 2010, 118:160.
[70] Xu L M, Shao A L, Zhao Y H, Wang Z J, Zhang C P, Sun Y L, Deng J, Chou L L. Journal of Nanoscience and Nanotechnology, 2015, 15:4215.
[71] Sharma H S, Hussain S, Schlager J, Ali S F, Sharma A. Acta Neurochir. Suppl., 2010, 106:359.
[72] Long Y M, Zhao X C, Clermont A C, Zhou Q F, Liu Q, Feener E P, Yan B, Jiang G B. Nanotoxicology, 2016, 10:501.
[73] Landgraf L, Muller I, Ernst P, Schafer M, Rosman C, Schick I, Kohler O, Oehring H, Breus V V, Basche T, Sonnichsen C, Tremel W, Hilger I. Beilstein J. Nanotechnol., 2015, 6:300.
[74] 管磊剑(Guan J L), 徐凯旋(Xu K X), 李宁宁(Li N N), 王心如(Wang X R), 吴笛(Wu D). 中国公共卫生(Chinese Journal of Public Health), 2017, 1018.
[75] Stamenkovic V, Milenkovic I, Galjak N, Todorovic V, Andjus P. Behavioural Brain Research, 2017, 331:241.
[76] Schoenfeld R, Schiffelholz T, Beyer C, Leplow B, Foreman N. Neurobiology of Learning and Memory, 2017, 139:117.
[77] Bodden C, Siestrup S, Palme R, Kaiser S, Sachser N, Richter S H. Behavioural Brain Research, 2018, 336:261.
[78] Zhang Y B, Ferguson S A, Watanabe F, Jones Y, Xu Y, Biris A S, Hussain S, Ali S F. Small, 2013, 9:1715.
[79] Yin N Y, Zhang Y, Yun Z J, Liu Q, Qu G B, Zhou Q F, Hu L G, Jiang G B. Toxicol. Lett., 2015, 237:112.
[80] Davenport L L, Hsieh H, Eppert B L, Carreira V S, Krishan M, Ingle T, Howard P C, Williams M T, Vorhees C V, Genter M B. Neurotoxicol. Teratol., 2015, 51:68.
[81] Liu P D, Huang Z H, Gu N. Ecotoxicology and Environmental Safety, 2013, 87:124.
[82] Ghaderi S, Tabatabaei S R F, Varzi H N, Rashno M. Journal of Toxicological Sciences, 2015, 40:263.
[83] Wu J J, Yu C H, Tan Y, Hou Z, Li M, Shao F, Lu X X. Environmental Research, 2015, 138:67.
[84] Powers C M, Slotkin T A, Seidler F J, Badireddy A R, Padilla S. Neurotoxicol. Teratol., 2011, 33:708.
[85] Tang J L, Xiong L, Wang S, Wang J Y, Liu L, Li J G, Wan Z Y, Xi T F. Applied Surface Science, 2008, 255:502.
[86] Dabrowska-Bouta B, Zieba M, Orzelska-Gorka J, Skalska J, Sulkowski G, Frontczak-Baniewicz M, Talarek S, Listos J, Struzynska L. Toxicology, 2016, 363/364:29.
[87] Yin N Y, Zhang Y, Yun Z J, Liu Q, Qu G B, Zhou Q F, Hu L G, Jiang G B. Toxicology Letters, 2015, 237:112.
[88] Ahmed M M, Hussein M M A. Biomedicine & Pharmacotherapy, 2017, 90:731.
[89] Yin N Y, Liu Q, Liu J Y, He B, Cui L, Li Z N, Yun Z J, Qu G B, Liu S J, Zhou Q F, Jiang G B. Small, 2013, 9:1831.
[90] 李永生(Li Y S), 阎学安(Yan X A), 邵福源(Shao F Y). 实用医药杂志(Practical Journal of Medicine & Pharmacy), 2006, 864.
[91] Begum A N, Aguilar J S, Elias L, Hong Y. Neurotoxicology, 2016, 57:45.
[92] Hadrup N, Loeschner K, Mortensen A, Sharma A K, Qvortrup K, Larsen E H, Lam H R. Neurotoxicology, 2012, 33:416.
[93] Hussain S M, Javorina A K, Schrand A M, Duhart H M, Ali S F, Schlager J J. Toxicol. Sci., 2006, 92:456.
[94] Mytych J, Zebrowski J, Lewinska A, Wnuk M. Molecular Neurobiology, 2017, 54:1285.
[95] Haase A, Rott S, Mantion A, Graf P, Plendl J, Thunemann A F, Meier W P, Taubert A, Luch A, Reiser G. Toxicol. Sci., 2012, 126:457.
[96] Hsiao I L, Hsieh Y K, Chuang C Y, Wang C F, Huang Y J. Environmental Toxicology, 2017, 32:1742.
[97] Skalska J, Dabrowska-Bouta B, Struzyńska L. Food and Chemical Toxicology, 2016, 97:307.
[98] Bacchetta C, Ale A, Simoniello M F, Gervasio S, Davico C, Rossi A S, Desimone M F, Poletta G, López G, Monserrat J M. Ecological Indicators, 2017, 76:230.
[99] Shi J P, Sun X, Lin Y, Zou X Y, Li Z J, Liao Y Y, Du M M, Zhang H W. Biomaterials, 2014, 35:6657.
[100] Kim S H, Ko J W, Koh S K, Lee I C, Son J M, Moon C, Kim S H, Shin D H, Kim J C. Molecular & Cellular Toxicology, 2014, 10:173.
[101] 亓珅(Qi K), 杜怡峰(Du Y F). 中国神经免疫学和神经病学杂志(Chinese Journal of Neuroimmunology and Neurology), 2013, 278.
[102] 徐说(Xu S), 林文娟(Lin W J). 生物化学与生物物理进展(Progress in Biochemistry and Biophysics), 2014, 1099.
[103] Colonna M, Butovsky O. Microglia Function in the Central Nervous System During Health and Neurodegeneration. in:Littman D R, Yokoyama W M, editors. Annual Review of Immunology, 2017, 35:441.
[104] Rubio-Perez J M, Morillas-Ruiz J M. Scientific World Journal, 2012, 2012:756357.
[105] Huang C L, Hsiao I L, Lin H C, Wang C F, Huang Y J, Chuang C Y. Environmental Research, 2015, 136:253.
[106] Danila O O, Berghian A S, Dionisie V, Gheban D, Olteanu D, Tabaran F, Baldea I, Katona G, Moldovan B, Clichici S, David L, Filip G A. Nanomedicine, 2017, 12:1455.
[107] Lin H C, Huang C L, Huang Y J, Hsiao I L, Yang C W, Chuang C Y. Toxicology in Vitro, 2016, 34:289.
[108] Pereira-Lopes S, Celhar T, Sans-Fons G, Serra M, Fairhurst A M, Lloberas J, Celada A. The Journal of Immunology, 2013, 191:6128.
[109] Sun C, Yin N Y, Wen R X, Liu W, Jia Y X, Hu L G, Zhou Q F, Jiang G B. Neurotoxicology, 2016, 52:210.
[110] Lin H C, Ho M Y, Tsen C M, Huang C C, Wu C C, Huang Y J, Hsiao I L, Chuang C Y. Toxicological Sciences, 2017, 158:151.
[111] Hanada S, Fujioka K, Inoue Y, Kanaya F, Manome Y, Yamamoto K. Int. J. Mol. Sci., 2014, 15:1812.
[112] Chen L Q, Fang L, Ling J, Ding C Z, Kang B, Huang C Z. Chemical Research in Toxicology, 2015, 28:501.
[113] Braydich-Stolle L K, Lucas B, Schrand A, Murdock R C, Lee T, Schlager J J, Hussain S M, Hofmann M C. Toxicological Sciences, 2010, 116:577.
[114] Riaz Ahmed K B, Nagy A M, Brown R P, Zhang Q, Malghan S G, Goering P L. Toxicology in Vitro, 2017, 38:179.
[115] Liu J Y, Hurt R H. Environmental Science & Technology, 2010, 44:2169.
[116] Gliga A R, Skoglund S, Odnevall W I, Fadeel B, Karlsson H L. Particle and Fibre Toxicology, 2014, 11:11.
[117] Suresh A K, Pelletier D A, Wang W, Morrell-Falvey J L, Gu B, Doktycz M J. Langmuir, 2012, 28:2727.
[118] Ahamed M, Karns M, Goodson M, Rowe J, Hussain S M, Schlager J J, Hong Y. Toxicology and Applied Pharmacology, 2008, 233:404.
[119] Zhang T L, Wang L M, Chen Q, Chen C Y. Yonsei. Med. J., 2014, 55:283.
[120] Orlowski P, Krzyzowska M, Zdanowski R, Winnicka A, Nowakowska J, Stankiewicz W, Tomaszewska E, Celichowski G, Grobelny J. Toxicology in Vitro, 2013, 27:1798.
[121] Milic M, Leitinger G, Pavicic I, Zebic Avdicevic M, Dobrovic S, Goessler W, Vinkovic Vrcek I. J. Appl. Toxicol., 2015, 35:581.
[122] Tejamaya M, Römer I, Merrifield R C, Lead J R. Environmental Science & Technology, 2012, 46:7011.
[123] Naha P C, Casey A, Tenuta T, Lynch I, Dawson K A, Byrne H J, Davoren M. Aquatic Toxicology, 2009, 92:146.
[124] Van Aerle R, Lange A, Moorhouse A, Paszkiewicz K, Ball K, Johnston B D, de-Bastos E, Booth T, Tyler C R, Santos E M. Environ. Sci. Technol., 2013, 47:8005.
[125] Zhou Q F, Sun C, Liu W, Jiang G B. Chinese Science Bulletin (Chinese Version), 2015, 60:645.
[126] Wang Z, Liu S J, Ma J, Qu G B, Wang X Y, Yu S J, He J Y, Liu J F, Xia T, Jiang G B. ACS Nano, 2013, 7:4171.
[127] Sussman E M, Casey B J, Dutta D, Dair B J. J. Appl. Toxicol., 2015, 35:631.
[128] Hsiao I L, Hsieh Y K, Wang C F, Chen I C, Huang Y J. Environmental Science & Technology, 2015, 49:3813.
[1] Yuzhu Zhang, Jing Zhan, Qian S. Liu, Qunfang Zhou, Guibin Jiang. Neurotoxicity Induced by Atmospheric Fine Particulate Matters and the Underlying Molecular Mechanism [J]. Progress in Chemistry, 2021, 33(5): 713-725.
[2] Xiaojuan Wang, Zhenzhen Liu, Qi Chen, Xiaoqiang Wang, Fang Huang. Interactions between Graphene Materials and Proteins [J]. Progress in Chemistry, 2019, 31(2/3): 236-244.
[3] Meng Qingbin Liu Keliang. Progress in the Research of Peptide Self-Assembly [J]. Progress in Chemistry, 2009, 21(11): 2411-2423.
[4] Wang Yunhai,Luo Yunjing**,Zhong Rugang . Protein Damage Induced by Peroxynitrite [J]. Progress in Chemistry, 2007, 19(06): 893-901.
Full text


Neurotoxicological Effects of Nanosilver