中文
Announcement
More
Progress in Chemistry 2018, Vol. 30 Issue (8): 1112-1120 DOI: 10.7536/PC171222 Previous Articles   Next Articles

• Review •

Preparation Technologies of the Polymer-Based MONOLITH Material and Its Application as Stationary Phase of Affinity Chromatography for the Separation of Biological Macromolecules

Ying Xu1, Tingting Gao1, Qixiao Wang1, Yang Qu1, Hongfei Liu1, Yuanrong Xin1,2*   

  1. 1. School of Pharmacy, Jiangsu University, Zhenjiang 212013, China;
    2. Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita 565-0871, Japan
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No. 51703086, 81602656), the Jiangsu Provincial Natural Science Foundation(No. BK20160496, BK20160546), the Postdoctoral Science Foundation(No. 2017M610309), and the Training Project for Young Key Teachers.
PDF ( 566 ) Cited
Export

EndNote

Ris

BibTeX

In recent years, a newly emerging polymer-based MONOLITH material (also known as the monolithic column, continuous bed) has been developed rapidly and it has already been utilized widely in various fields. Due to its unique three-dimensional continuous interconnected porous structure in a single piece, polymer-based MONOLITH has attracted more and more attention and it is regarded as one of the major breakthroughs in separation and filtration techniques. Compared with silica-based MONOLITH material, polymer-based MONOLITH material has the advantages of simple preparation process, good biocompatibility, high chemical stability and easy regulation of surface chemical properties. Therefore, polymer-based MONOLITH has always done a better job as a stationary phase of affinity chromatography for separating and analyzing biological macromolecules. In this review, the preparation techniques and the newest development of the polymer-based MONOLITH material are summarized. In addition, its application as stationary phase of affinity chromatography for the separation of biological macromolecules in the last 5 years is described.
Contents
1 Introduction
2 Preparation techniques of the polymer-based MONOLITH materials
2.1 Free radical polymerization
2.2 Controlled/living radical polymerization
2.3 Polymerized high internal phase emulsions
2.4 Condensation polymerization
2.5 Cryogels
2.6 Other methods
3 Application of the polymer-based MONOLITH materials in separation of biomolecules by affinity chromatography
3.1 Bioaffinity chromatography
3.2 Immunoaffinity chromatography
3.3 Dye affinity chromatography
3.4 Boronate affinity chromatography
3.5 Immobilized metal-ion affinity chromatography
3.6 Pseudo affinity chromatography
4 Conclusion

CLC Number: 

[1] Svec F, Frechet J M J. Anal. Chem., 1992, 64:820.
[2] Saba S A, Mousavi M P, Bühlmann P, Hillmyer M A. J. Am. Chem. Soc., 2015, 137:8896.
[3] Nischang I, Causon T J. Trends Anal. Chem., 2016, 75:108.
[4] Ahmed A, Forster M, Clowes R, Myers P, Zhang H. Chem. Commun., 2014, 50:14314.
[5] Jones B H, Lodge T P. ACS Nano, 2011, 5:8914.
[6] Ungureanu S, Birot M, Deleuze H, Schmitt V, Mano N, Backov R. Carbon, 2015, 91:311.
[7] Moitra N, Kanamori K, Shimada T, Takeda K, Ikuhara Y H, Xiang G, Nakanishi K. Adv. Funct. Mater., 2013, 23:2714.
[8] Ghanem A, Ikegami T. J. Sep. Sci., 2011, 34:1945.
[9] Siouffi A M. J. Chromatogr. A, 2003, 1000:801.
[10] Liang Y, Zhang L H, Zhang Y K. Anal. Bioanal.Chem., 2013, 405:2095.
[11] Podgornik A, Yamamoto S, Peterka M, Krajnc N L. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2013, 927:80.
[12] Hong T T, Xi Y, Xu Y J, Ji Y B. Anal. Chim. Acta, 2016, 931:1.
[13] Levkin P A, Eeltink S, Stratton T R, Brennen R, Robotti K, Yin H, Killeen K, Svec F, Fréchet J M. J. Chromatogr. A, 2008, 1200:55.
[14] Svec F. J. Chromatogr. A, 2010, 1217:902.
[15] Namera A, Nakamoto A, Saito T, Miyazaki S. J. Sep. Sci., 2011, 34:901.
[16] Buchmeiser M R. Polymer, 2007, 48:2187.
[17] Nischang I, Teasdale I, Brüggemann O. Anal. Bioanal. Chem., 2011, 400:2289.
[18] Svec F, Lv Y. Anal. Chem., 2015, 87:250.
[19] Wu S B, Sun L L, Ma J F, Yang K G, Liang Z, Zhang L H, Zhang Y K. Talanta, 2011, 83:1748.
[20] Weed A K, Dvornik J, Stefancin J J, Gyapong A A, Svec F, Zajickova Z. J. Sep. Sci., 2014, 36:270.
[21] Safrany Á, Beiler B, Laszló K, Svec F. Polymer, 2005, 46:2862.
[22] Sui G, Zhong W H, Yang X P. Polym. Adv. Technol., 2010, 20:811.
[23] Beiler B, Vincze Á, Svec F, Safrany Á. Polymer, 2007, 48:3033.
[24] Vaast A, Terryn H, Svec F, Eeltink S. J. Chromatogr. A, 2014, 1374:171.
[25] Viklund C, Svec F, Fréchet J M J, Irgum K. Chem. Mater., 1996, 8:744.
[26] Krzesińska M. Journal of Achievements in Materials and Manufacturing Engineering. 2012, 55:45.
[27] Liu L H, Yang C X, Yan X P. J. Chromatogr. A, 2017, 1479:137.
[28] Nischang I. J. Chromatogr. A, 2013, 1287:38.
[29] Rozenbrand J, van Bennekom W P. J. Sep. Sci., 2015, 34:1934.
[30] Bai L G, Yang G L, Lei H, Wang Y, Yan C H. Chin. Sci. Bull., 2012, 57:2942.
[31] Wei Z, Zhang D D, Li C, Bai L, Liu H Y, Yan H Y. Anal. Methods, 2017, 9:2596.
[32] Akeroyd N, Klumperman B. Eur. Polym. J., 2011, 47:1207.
[33] Bai J Y, Ou J J, Zhang H Y, Ma S J, Shen Y H, Ye M L. J. Chromatogr. A, 2017, 1514:72.
[34] Lei H, Bai L, Zhang X, Yang G. J. Sep. Sci., 2014, 52:1211.
[35] Reyesortega F, Parraruiz F J, Averick S E, Rodriguez G, Aguilar M R, Matyjaszewski K, Roman J S. Polym. Chem., 2013, 4:2800.
[36] Lissant K J. J. Colloid Interface Sci., 1966, 22:462.
[37] Barlik N, Keskinler B, Kocakerim M M, Akay G. J. Appl. Polym. Sci., 2015, 132:42286.
[38] Barlik N, Keskinler B, Kocakerim M M, Akay G. Desalin. Water Treat., 2016, 57:26440.
[39] Sevsek U, Brus J, Je Drabek K, Krajnc P. Polymer, 2014, 55:410.
[40] Mert E H, Kaya M A, Yildirim H. Des. Monomers Polym., 2012, 15:113.
[41] Barbetta A, Dentini M, Leandri L, Ferraris G, Coletta A, Bernabei M. React. Funct. Polym., 2009, 69:724.
[42] Pulko I, Smrekar V, Podgornik A, Krajnc P. J. Chromatogr. A, 2011, 1218:2396.
[43] Yao C H, Qi L, Qiao J, Zhang H Z, Wang F Y, Chen Y, Yang G L. Talanta, 2010, 82:1332.
[44] Peng J X, Xia H Y, Liu K Q, Gao D, Yang M N, Yan N, Fang Y. J. Colloid Interface Sci., 2009, 336:780.
[45] Majer J, Krajnc P. Acta Chimica Slovenica, 2009, 56:629.
[46] Meng X, Zeng N, Zhang J, Jiang L, Dan Y. J. Colloid Interface Sci., 2017, 497:290.
[47] Cameron N R. Polymer, 2005, 46:1439.
[48] Sun X F, Chai Z K. J. Chromatogr. A, 2002, 943:209.
[49] Talebi M, Arrua R D, Gaspar A, Lacher N A, Wang Q, Haddad P R, Hilder E F. Anal. Bioanal.Chem., 2013, 405:2233.
[50] Wang J B, Wu F L, Xia R R, Qi Z, Lin X C, Xie Z H. J. Chromatogr. A, 2016, 1449:100.
[51] Plieva F M, Savina I N, Deraz S, Andersson J, Galaev I Y, Mattiasson B. J. Chromatogr. B, 2004, 807:129.
[52] Uygun M, Senay R H, Avcibasi N, Akgöl S. Appl. Biochem. Biotechnol., 2014, 172:1574.
[53] Ertürk G, Mattiasson B. J. Chromatogr. A, 2014, 1357:24.
[54] Plieva F, Bober B, Dainiak M, Galaev I Y, Mattiasson B. J. Mol. Recognit., 2006, 19:305.
[55] Plieva F M, Kirsebom H, Mattiasson B. J. Sep. Sci., 2011, 34:2164.
[56] Unlü N, Ceylan S, Erzengin M, Odabasi M. J. Sep. Sci., 2015, 34:2173.
[57] Alkan H, Cömert S C, Gürbüz F, Do Dgru M, Odabasi M. Artif. Cells Nanomed. Biotechnol., 2017, 45:90.
[58] Tozak K Ö, Erzengin M, Sargin I, Vnlü N. Excli J., 2013, 12:670.
[59] Ceylan S, Odabasi M. Artif Cells Nanomed Biotechnol, 2013, 41:376.
[60] Xin Y R, Xiong Q C, Bai Q H, Miyamoto M, Cong L, Shen Y H, Uyama H. Carbohydr. Polym., 2017, 157:429.
[61] Wang G W, Xin Y R, Uyama H. Carbohydr. Polym., 2015, 132:345.
[62] Wang G W, Xin Y R, Han W J, Uyama H. J. Appl. Polym. Sci., 2015, 132:345.
[63] Han W J, Xin Y R, Hasegawa U, Uyama H. Polym. Degrad. STab., 2014, 109:362.
[64] SproB J, Sinz A. J. Sep. Sci., 2015, 34:1958.
[65] Vlakh E G, Platonova G A, Tennikova T B. Methods Mol. Biol., 2014, 1129:303.
[66] Arora S, Saxena V, Ayyar B V. Methods, 2016, 116:84.
[67] Pfaunmiller E L, Paulemond M L, Dupper C M, Hage D S. Anal. Bioanal.Chem., 2013, 405:2133.
[68] Arrua R D, Alvarez Igarzabal C I. J. Sep. Sci., 2011, 34:1974.
[69] Tetala K K, van Beek T A. J. Sep. Sci., 2010, 33:422.
[70] Alkan H, Bereli N, Baysal Z, Denizli A. Biochem. Eng. J., 2010, 51:153.
[71] Leblebici P, Leblebici M E, Ferreira-da-silva F, Rodrigues A E, Pais L S. J. Chromatogr. B, 2014, 962:89.
[72] Reichelt S, Elsner C, Prager A, Naumov S, Kuballa J, Buchmeiser M R. Analyst, 2012, 137:2600.
[73] Flodrova D, Bobalova J, Lastovic kova M. Cereal Res. Commun., 2016, 44:286.
[74] Le Goff A, Gorgy K, Holzinger M, Haddad R, Zimmerman M, Cosnier S. Chemistry, 2011, 17:10216.
[75] Zheng H J, Ma J T, Feng W, Jia Q. J. Chromatogr. A, 2017, 1512:88.
[76] Zheng H J, Zhu T G, Li X Q, Ma J T, Jia Q. Anal. Chim. Acta, 2017, 983:141.
[77] Li Z, Rodriguez E, Azaria S, Pekarek A, Hage D S. Electrophoresis, 2017, 38:22.
[78] Mönster A, Hiller O, Grüger D, Blasczyk R, Kasper C. J. Chromatogr. A, 2011, 1218:706.
[79] Hoefferer L, Glauser I, Gaida A, Willimann K, Marques Antunes A, Siani B, Wymann S, Widmer E, El Menyawi I, Bolli R, Spycher M, Imboden M. Transfusion, 2015, 55:S117.
[80] Lau B P Y, Lewis D, Lawrence J F. J. Mass Spectrom., 2015, 32:655.
[81] Akmacic I T, Nemec B, Vidic U, Malic S, Miklic K, Cernigoj U, Vidic J, Krajnc N L, Strancar A, Lauc G, Rovis T L, Bakovis M P. Croat. Chem. Acta, 2016, 89:1.
[82] Smits N G E, Blokland M H, Wubs K L, Nessen M A, Ginkel L A V, Nielen M W F. Anal. Bioanal.Chem., 2015, 407:6041.
[83] Brgles M, Kurtovic T, Kovac ic L, Krizaj I, Barut M, Lang B M, Allmaier G, Marchetti-Deschmann M, Halassy B. Anal. Bioanal.Chem., 2014, 406:293.
[84] Denizli A l, Köktürk G, Yavuz H, Piskin E. J. Appl. Polym. Sci., 2015, 74:2803.
[85] Urtasun N, Baieli M F, Hirsch D B, Martinez-Ceron M C, Cascone O, Wolman F J. Food Bioprod. Process., 2017, 103:58.
[86] Cimen D, Yilmaz F, Percin I, Türkmen D, Denizli A. Sci. Eng. C Mater. Biol.Appl., 2015, 56:318.
[87] Uzun L, Armutcu C, Bicen Ö, Ersöz A, Say R, Denizli A. Colloids Surf. B Biointerfaces, 2013, 112:1.
[88] Espina-Benitez M B, Randon J, Demesmay C, Dugas V. J. Chromatogr. A, 2017, 1494:65.
[89] Zhang Q C, Cheng Y Y, Li G K, Xiao X H. Chin. Chem. Lett., 2015, 26:1470.
[90] Li D J, Li Y, Li X L, Bie Z J, Pan X H, Zhang Q, Liu Z. J. Chromatogr. A, 2015, 1384:88.
[91] Man Y, Peng G, Lv X F, Liang Y L, Wang Y, Chen Y, Deng Y L. Chromatographia, 2015, 78:157.
[92] Peng M J, Xiang H Y, Hu X, Shi S Y, Chen X Q. J. Chromatogr. A, 2016, 1474:8.
[93] Xing R R, Wang S S, Bie Z J, Hui H, Zhen L. Nat. Protoc., 2017, 12:964.
[94] Lin Z, Wang J, Tan X Q, Sun L X, Yu R F, Yang H H, Chen G N. J. Chromatogr. A, 2013, 1319:141.
[95] Porath J, Carlsson J, Olsson I, Belfrage G. Nature, 1975, 258:598.
[96] 韦誉(Wei Y), 陈露(Chen X), 杨胜超(Yang S C), 吕清慧(Lv Q H), 叶芳贵(Ye F G), 赵书林(Zhao S L). 分析化学(Chin. J. Anal. Chem.), 2014, 42:495.
[97] Min J S, Tan L, Min H J, Kim J H, Choe W S. J. Chromatogr. A, 2011, 1218:5273.
[98] Rajak P, Vijayalakshmi M A, Jayaprakash N S. Biomed. Chromatogr., 2012, 26:1488.
[99] Savane T S, Kumar S, Janakiraman V N, Kamalanathan A S, Vijayalakshmi M A. J. Chromatogr. B, 2016, 1021:129.
[100] Zeinab M, Hiam K M, Edmond C, Assem E. J. Chromatogr. B, 2015, 975:77.
[101] Pavan G L, Lazzarotto Bresolin I T, Grespan A, Alves Bueno S M. J. Chromatogr. B, 2017, 1052:10.
[102] Zhao Q, Li X F, Le X C. Anal. Chem., 2008, 80:3915.
[103] Wang Z, Zhao J C, Lian H Z, Chen H Y. Talanta, 2015, 138:52.
[104] Chen Y B, Deng N, Wu C, Liang Y, Jiang B, Yang K G, Liang Z, Zhang L H, Zhang Y K. Talanta, 2016, 154:555.
[105] Domingues D S, Souza I D, Queiroz M E. J. Chromatogr. B, 2015, 993/994:26.
[106] Zhang X P, Wang T D, Zhang H Z, Han B, Wang L S, Kang J W. J. Chromatogr. A, 2014, 1359:84.
[107] Qu H H, Wang Y, Shan W C, Zhang Y, Feng H B, Sai J Y, Wang Q G, Zhao Y. J. Chromatogr. B, 2015, 985:197.
[1] Xiangming Na, Weiqing Zhou, Juan Li, Zhiguo Su, Guanghui Ma. Preparation and Application of Porous Polymer Microspheres in Virus-Like Particles Purification [J]. Progress in Chemistry, 2018, 30(1): 5-13.
[2] Sun Xiaojie, Xing Jun, Zhai Yuxiu, Li Zhaoxin. The Development of Ionic Liquids as Stationary Phases for Gas Chromatography [J]. Progress in Chemistry, 2014, 26(04): 647-656.
[3] Weng Xilun, Bao Zongbi, Luo Fei, Su Baogen, Yang Yiwen, Ren Qilong. Progress in Preparation and Applications of Cellulose Derivatives-Based Chiral Stationary Phase [J]. Progress in Chemistry, 2014, 26(0203): 415-423.
[4] Shen Aijin, Guo Zhimou, Liang Xinmiao. Development and Application of Hydrophilic Interaction Liquid Chromatographic Stationary Phases [J]. Progress in Chemistry, 2014, 26(01): 10-18.
[5] Xie Shengming, Yuan Liming. Metal-Organic Frameworks Used as Chromatographic Stationary Phases [J]. Progress in Chemistry, 2013, 25(10): 1763-1770.
[6] Xiong Xingquan*, Jiang Yunbing. Reversible Diels-Alder Reaction [J]. Progress in Chemistry, 2013, 25(06): 999-1011.
[7] Li Pengzhang, Wang Yuebo. Enrichment Methods of Phosphopeptides in Proteomics [J]. Progress in Chemistry, 2012, (9): 1785-1793.
[8] Qiu Suyan, Gao Sen, Lin Zhenyu, Chen Guonan. Advances in Click Chemistry [J]. Progress in Chemistry, 2011, 23(4): 637-648.
[9] Chen Mengjie, Yao Jinrong, Shao Zhengzhong, Chen Xin. Biomacromolecule-based Nanoparticle Drug Carriers [J]. Progress in Chemistry, 2011, 23(01): 202-212.
[10] Lu Shiyong Wu Zhanggui Ye Weidong Wu Guofeng Pan Yibin Qian Junqing. Application of Frontal Affinity Chromatography to Studies on Interactions of Molecules [J]. Progress in Chemistry, 2010, 22(01): 148-152.
[11] Li Li,Zi Min,Ren Chaoxing,Yuan Liming **. The Development of Chiral Stationary Phase in Gas Chromatography [J]. Progress in Chemistry, 2007, 19(0203): 393-403.
[12] Yongzhu He1,3|Hao Pang1,3|Bing Liao1,2*. Progress in Cellulose-Based Chiral Stationary Phases [J]. Progress in Chemistry, 2006, 18(0708): 957-965.
[13] Lu Yanbing,Xu Weijian*. Applications of Polymers in Micellar Electrok inetic Chromatography [J]. Progress in Chemistry, 1999, 11(01): 92-.