中文
Announcement
More
Progress in Chemistry 2018, Vol. 30 Issue (7): 888-901 DOI: 10.7536/PC171127 Previous Articles   Next Articles

• Review •

Interfacial Interaction on Phospholipid Membrane

Guangyan Qing, Zhonghui Chen, Guangyan Qing*   

  1. State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No. 21275114, 51473131, 21775116).
PDF ( 476 ) Cited
Export

EndNote

Ris

BibTeX

As a class of crucially important biomolecules, phospholipids are key building blocks of cytomembrane and play indispensable roles in a variety of life activities, such as cell activation, metabolism maintenance, hormone secretion, and so on. There are a variety of phospholipids, most of which display remarkable advantages in strong self-assembly ability, excellent biocompatibility, no cytotoxicity and easy availability. As the most typical interfacial materials, the unique bilayer structures and outstanding biological performances of phospholipid membranes have attracted researchers' interests, which provide an excellent platform to investigate molecular characteristics and interfacial interactions on cell membranes. In addition, phospholipids can be also used as biomedical materials. Various chemically modified phospholipids and phospholipid-nanoparticle composites display good prospects for development in biomedical fields of tumor imaging technology and drug targeting delivery, which greatly promotes the development of new-generation biomaterials. In this review, the classification of phospholipids has been summarized and their adsorption behaviors on different substrates are also discussed. Then special interests are placed on selective recognition capacities of the phospholipid bilayers and the interfacial interactions between phospholipid bilayers and various biomolecules, such as peptides, enzymes and proteins. Finally, the enticing prospects of phospholipid-based biomaterials in bio-sensing, drug research and bio-imaging technology are demonstrated.
Contents
1 Introduction
2 Classification of phospholipids
2.1 Natural phospholipids
2.2 Synthetic phospholipids
2.3 Phospholipid-based composites
3 Assembly behaviors of phospholipids on different surfaces
3.1 Mica surface
3.2 Silicon dioxide surface
3.3 Gold surface
3.4 Thiolated gold surface
4 Effect of phospholipid bilayers on biomolecules
4.1 Selective recognition at biointerface
4.2 Effect on self-assembly of peptide
4.3 Effect on enzyme catalysis
4.4 Effect on protein
5 Bio-applications of phospholipids
5.1 Bio-sensing
5.2 Drug targeted transport
5.3 Biological imaging technology
5.4 Drug release
6 Conclusion

CLC Number: 

[1] Nafday O A, Lowry T W, Lenhert S. Small, 2012, 8:1021.
[2] Tu Y, Lv M, Xiu P, Huynh T, Zhang M, Castelli M, Liu Z, Huang Q, Fan C, Fang H, Zhou R. Nat. Nanotechnol., 2013, 8:594.
[3] Suetsugu S, Kurisu S, Takenawa T. Physiol. Rev., 2014, 94:1219.
[4] Mapstone M, Cheema A K, Fiandaca M S, Zhong X, Mhyre T R, MacArthur L H, Hall W J, Fisher S G, Peterson D R, Haley J M, Nazar M D, Rich S A, Berlau D J, Peltz C B, Tan M T, Kawas C H, Federoff H J. Nat. Med., 2014, 20:415.
[5] Hoogevest P V, Wendel A. Eur. J. Lipid Sci. Technol., 2014, 116:1088.
[6] Park S H, Das B B, Casagrande F, Tian Y, Nothnagel H J, Chu M, Kiefer H, Maier K, Angelis A D, Marassi F M, Opella S J. Nature, 2012, 491:779.
[7] Hagn F, Etzkorn M, Raschle T, Wagner G. J. Am. Chem. Soc., 2013, 135:1919.
[8] Cordeiro R M. Biochim. Biophys. Acta Biomembr., 2014, 1838:438.
[9] Shao S, Geng J, Yi H A, Gogia S, Neelamegham S, Jacobs A, Lovell J F. Nat. Chem., 2015, 7:438.
[10] Robison A D, Sun S, Poyton M F, Johnson F A, Pellois J P, Jungwirth P, Vazdar M, Cremer P S. J. Phys. Chem. B, 2016, 120:9287.
[11] Salzano G, Riehle R, Navarro G, Perche F, De R G, Tor-chilin V P. Cancer Lett., 2014, 343:224.
[12] Davies S S, Guo L. Chem. Phys. Lipids, 2014, 181:1.
[13] Noyhouzer T, L'Homme C, Beaulieu I, Mazurkiewicz S, Kuss S, Kraatz H B, Canesi S, Mauzeroll J. Langmuir, 2016, 32:4169.
[14] Yu F, Ao M, Zheng X, Li N, Xia J, Li Y, Li D, Hou Z, Qi Z, Chen X D. Drug Delivery, 2017, 24:825.
[15] Park J H, Cho H J, Yoon H Y, Yoon I S, Ko S H, Shim J S, Cho J H, Park J H, Kim K, Kwon I C, Kim D D. J. Control. Release, 2014, 174:98.
[16] Pattni B S, Chupin V V, Torchilin V P. Chem. Rev., 2015, 115:10938.
[17] Zhang Z, Sohgawa M, Yamashita K, Noda M. Electroanalysis, 2016, 28(3):620.
[18] Wang T, Feng Y, Jin X, Fan X, Crommen J, Jiang Z. J. Pharm. Biomed. Anal., 2014, 96:263.
[19] Liu Q, Boyd B J. Analyst, 2013, 138:391.
[20] Shen Y X, Saboe P O, Sines I T, Erbakan M, Kumar M. J. Membr. Sci., 2014, 454:359.
[21] Kuang H, Ku S H, Kokkoli E. Adv. Drug Delivery Rev., 2017, 110:80.
[22] Oberli M A, Reichmuth A M, Dorkin J R, Mitchell M J, Fenton O S, Jaklenec A, Anderson D G, Langer R, Blankschtein D. Nano Lett., 2017, 17:1326.
[23] Peng R, Wang H, Lyu Y, Xu L, Liu H, Kuai H, Liu Q, Tan W. J. Am. Chem. Soc., 2017, 139:12410.
[24] Shi K, Li J, Cao Z, Yang P, Qiu Y, Yang B, Wang Y, Long Y, Liu Y, Zhang Q, Qian J, Zhang Z, Gao H, He Q. J. Control. Release, 2015, 217:138.
[25] Qu W, Zuo W, Li N, Hou Y, Song Z, Gou G, Yang J. J. Drug Targeting, 2017, 25:661.
[26] Li J, Wang X, Zhang T, Wang C, Huang Z, Luo X, Deng Y. Asian J. Pharm. Sci., 2015, 10:81.
[27] Singh R P, Gangadharappa H V, Mruthunjaya K. J. Drug Delivery Sci. Technol., 2017, 39:166.
[28] 闫媛媛(Yan Y Y), 张康逸(Zhang K Y), 黄健花(Huang J H), 刘元法(Liu Y F), 王兴国(Wang X G). 中国油脂(China Oils and Fats), 2012, 37(5):61.
[29] Hama S, Ogino C, Kondo A. Appl. Microbiol. Biotechnol., 2015, 99:7879.
[30] Baldassarre F, Allegretti C, Tessaro D, Carata E, Citti C, Vergaro V, Nobile C, Cannazza G, Arrigo P D, Mele A, Dini L, Ciccarella G. ChemistrySelect, 2016, 1:6507.
[31] Cox E, Michalak A, Pagentine S, Seaton P, Pokorny A. Biochim. Biophys. Acta, Biomembr., 2014, 1838:2198.
[32] Slavetinsky C, Kuhu S, Peschel A. Biochim. Biophys. Acta, Mol. Cell Biol. Lipids, 2017, 1862:1310.
[33] Zhou C Y, Wu H, Devaraj N K. Chem. Sci., 2015, 6:4365.
[34] Liu J, Li J, Liu N, Guo N, Gao C, Hao Y, Chen Y, Zhang X. Int. J. Pharm., 2017, 530:291.
[35] Zhuang J, Young A P, Tsung C K. Small, 2017, 32:1700880.
[36] Du B, Tian L, Gu X, Li D, Wang E, Wang J. Small, 2015, 11:2333.
[37] Katagiri K, Imai Y, Koumoto K, Kaiden T, Kono K, Ao-shima S. Small, 2011, 7:1683.
[38] Liao Z, Wang H, Wang X, Zhao P, Wang S, Su W, Chang J. Adv. Funct. Mater., 2011, 21:1179.
[39] Zhang L, Chen Z, Li Y. Int. J. Nanomed., 2013, 8:3689.
[40] Wang F, Liu J. Small, 2014, 10:3927.
[41] Ross E E, Bondurant B, Spratt T, Conboy J C, O'Brien D F, Saavedra S S. Langmuir, 2001, 17:2305.
[42] Richter R P, Bérat R, Brisson A R. Langmuir, 2006, 22:3497.
[43] Watts T H, Brian A A, Kappler J W, Marrack P, Mcconnell H M. Proc. Natl. Acad. Sci. U. S. A., 1984, 81:7564.
[44] Richter R P, Brisson A R. Biophys. J., 2005, 88:3422.
[45] Reimhult E, Zäch M, Höök F, Kasemo B. Langmuir, 2006, 22:3313.
[46] Zhu X, Wang Z, Zhao A, Huang N, Chen H, Zhou S, Xie X. Colloids Surf. B, 2014, 116:459.
[47] Zawisza I, Lachenwitzer A, Zamlynny V, Horswell S L, Goddard J D, Lipkowski J. Biophys. J., 2003, 85:4055.
[48] Toma K, Kano H, Offenhäusser A. ACS Nano, 2014, 8:12612.
[49] Paw?owski J, Juhaniewicz J, Güzelo D?lu A, S?k S. Langmuir, 2015, 31:11012.
[50] Viitala L, Lajunen T, Urtti A O, Viitala T, Murtomäki L. J. Phys. Chem. C, 2015, 119:21395.
[51] Schönherr H, Johnson J M, Lenz P, Frank C W, Boxer S G. Langmuir, 2004, 20:11600.
[52] Hasan I Y, Mechler A. Biointerphases, 2016, 11:031017.
[53] Cajal Y, Svendsen A, De B J, Patkar S A, Alsina M A. Biochimie, 2000, 82:1053.
[54] Cozza G, Rossetto M, Bosello-Travain V, Maiorino M, Roveri A, Toppo S, Zaccarin M, Zennaro L, Ursini F. Free Radical Biol. Med., 2017, 112:1.
[55] Willems N, Lelimousin M, Koldsø H, Sansom M S. Bio-chim. Biophys. Acta, 2017, 1859:340.
[56] Alvares D S, Wilke N, Neto J R, Fanani M L. Chem. Phys. Lipids, 2017, 207:38.
[57] Das D, Pal S K. Chemistryselect, 2017, 2:4779.
[58] Daudey G A, Zope H R, Voskuhl J, Kros A, Boyle A L. Langmuir, 2017, 33:12443.
[59] Schulz M, Werner S, Bacia K, Binder W H. Angew. Chem. Int. Ed., 2013, 52:1829.
[60] Biros S M, Ullrich E C, Hof F, Laurent T A, Julius R J. J. Am. Chem. Soc., 2004, 126:2870.
[61] Ishigami T, Suga K, Umakoshi H. ACS Appl. Mater. Interfaces, 2015, 7:21065.
[62] Hirose M, Ishigami T, Suga K, Umakoshi H. Langmuir, 2015, 31:12968.
[63] Okamoto Y, Kishi Y, Suga K, Umakoshi H. Biomacromolecules, 2017, 18:1180.
[64] Okamoto Y, Kishi Y, Ishigami T, Suga K, Umakoshi H. J. Phys. Chem. B, 2016, 120:2790.
[65] 陆时万(Lu S W), 徐祥生(Xu X S), 沈敏健(Shen M J). 植物学(Botany). 北京:高等教育出版社(Beijing:Higher Education Press), 1991. 8.
[66] 王建勋(Wang J X), 秦四勇(Qin S Y), 蔡腾腾(Cai T T). 高等学校化学学报(Chemical Journal of Chinese Universities), 2015, 36(2):201.
[67] Kornmueller K, Lehofer B, Meindl C, Fröhlich E, Leitinger G, Amenitsch H, Prassl R. Biomacromolecules, 2016, 17:3591.
[68] Gao G, Zhang M, Lu P, Guo G, Wang D, Sun T. Angew. Chem., 2015, 127:2273.
[69] Sevigny J, Chiao P, Bussière T, Weinreb P H, Williams L, Maaier M, Dunstan R, Salloway S, Chen T, Ling Y, O'Gorman J, Qian F, Arastu M, Li M, Chollate S, Brennan M S, Quinrero-Monzon O, Scannevin R H, Arnold H M, Engber T, Rhodes K, Ferrero J, Hang Y, Mikulskis A, Grimm J, Hock C, Nitsch R M, Sandrock A. Nature, 2016, 537:50.
[70] 叶明舟(Ye M Z). 浙江大学博士论文(Doctoral Dissertation of Zhejiang University), 2015.
[71] Qing G, Zhao S, Xiong Y, Lv Z, Jiang F, Liu Y, Chen H, Zhang M, Sun T. J. Am. Chem. Soc., 2014, 136:10736.
[72] Gao G, Zhang M, Lu P, Guo G, Wang D, Sun T. Angew. Chem., 2015, 54:2245.
[73] 王悦(Wang Y), 彭蜀晋(Peng S J), 周媛(Zhou Y). 大学化学(University Chemistry), 2011, 26(5):88.
[74] 王镜岩(Wang J Y), 朱圣康(Zhu S K), 徐长法(Xu C F). 生物化学(Biochemistry). 北京:高等教育出版社(Beijing:Higher Education Press), 2002. 319.
[75] Agapakis C M, Boyle P M, Silver P A. Nat. Chem. Biol., 2012, 8:527.
[76] Tabaei S R, Rabe M, Zetterberg H, Zhdanov V P, Höök F. J. Am. Chem. Soc., 2013, 135:14151.
[77] Carvalho C M L, Cabral J M S. Biochimie, 2000, 82:1063.
[78] Anzenbacher P, Anzenbacherová E. Cell. Mol. Life Sci., 2001, 58:737.
[79] Navrátilová V, Paloncyova M, Berka K, Otyepka M. J. Phys. Chem. B, 2016, 120:11205.
[80] 李红春(Li H C). 中国科学技术大学博士论文(Doctoral Dissertation of University of Science and Technology of China), 2015.
[81] Wang L, Gotoh T, Wang Y, Kouyama T, Wang J Y. J. Phys. Chem. C, 2017, 121:19999.
[82] Perez L, Mettry M, Hinman S S, Byers S R, McKeating K S, Caulkins B G, Cheng Q, Hooley R J. Soft Matter, 2017, 13:3966.
[83] Shen Y R. Nature, 1989, 337:519.
[84] Yan E C Y, Fu L, Wang Z, Liu W. Chem. Rev., 2014, 114:8471.
[85] Wu H L, Tong Y, Peng Q, Li N, Ye S. Phys. Chem. Chem. Phys., 2016, 18:1411.
[86] Wei F, Ye S, Li H, Luo Y. J. Phys. Chem. C, 2013, 117:11095.
[87] 胡艳军(Hu Y J), 蒋风雷(Jiang F L), 欧阳宇(Ouyang Y),刘义(Liu Y). 中国科学:化学(Scientic Sinica:Chimica), 2010, (9):90.
[88] Graça J S, de Oliveira R F, de Moraes M L, Ferreira M. Bioelectrochemistry, 2014, 96:37.
[89] Lin B, Liu D, Yan J, Qiao Z, Zhong Y, Yan J, Zhu Z, Ji T, Yang C J. ACS Appl. Mater. Interfaces, 2016, 8:6890.
[90] Weingart O G, Loessner M J. Toxicol. Appl. Pharmacol., 2016, 313:16.
[91] Kang D H, Jung H S, Kim K, Kim J. ACS Appl. Mater. Interfaces, 2017, 9:42210.
[92] Kraft J C, Freeling J P, Wang Z, Ho R J. J. Pharm. Sci., 2014, 103:29.
[93] Yan L, Crayton S H, Thawani J P, Amirshaghaghi A, Tsourkas A, Cheng Z. Small, 2015, 11:4870.
[94] Davis B M, Normando E M, Guo L, Turner L A, Nizari S, O'Shea P, Moss S E, Somavarapu S, Cordeiro M F. Small, 2014, 10:1575.
[95] Xu H L, Yang J J, Zhuge D L, Lin M T, Zhu Q Y, Jin B H, Tong M Q, Shen B X, Xiao J, Zhao Y Z. Adv. Healthcare Mater., DOI:10.1002/adhm.201701130.
[96] Tansi F L, Rüger R, Rabenhold M, Steiniger F, Fahr A, Kaiser W A, Hilger L. Small, 2013, 9:3659.
[97] Kim J, Pandya D N, Lee W, Park J W, Kim Y J, Kwak W, Ha Y S, Chang Y, An G I, Yoo J. ACS Med.Chem.Lett., 2014, 5:390.
[98] Gao X, Li C. Small, 2014, 10:426.
[99] Voon S H, Kiew L V, Lee H B, Lim S H, Noordin M I, Kamkaew A, Burgess K, Chung L Y. Small, 2014, 10:4993.
[100] Wang C, Ye Y, Hu Q, Bellotti A, Gu Z. Adv. Mater., 2017, 29.
[101] Sun Q, You Q, Wang J, Liu L, Wang Y, Song Y, Cheng Y, Wang S, Tan F, Li N. ACS Appl. Mater. Interfaces, 2018, 10:1963.
[102] Mazur F, Bally M, Städler B, Chandrawati R. Adv. Colloid Interface Sci., 2017, 249:88.
[103] Liu Q, Boyd B J. Analyst, 2013, 138:391.
[104] Mahmoudi-Badiki T, Alipour E, Hamishehkar H, Golabi S M. J. Biomater. Appl., 2016, 31:273.
[105] Zhu Y, Liao L. J. Nanosci. Nanotechnol., 2015, 15:4753.
[106] Bygd H C, Ma L, Bratlie K M. Mater. Sci. Eng. C, 2017, 79:237.
[107] Goldenbogen B, Brodersen N, Gramatica A, Loew M, Liebscher J, Herrmann A, Egger H, Budde B, Arbuzova A. Langmuir, 2011, 27:10820.
[108] Agrawal M, Ajazuddin, Tripathi D K, Saraf S, Saraf S, Antimisiaris S G, Mourtas S, Hammarlund-Udenaes M, Alexander A. J. Control. Release, 2017, 260:61.
[109] Shaw T K, Mandal D, Dey G, Pal M M, Paul P, Chakraborty S, Ali K A, Mukherjee B, Bandyopadhyay A K, Mandal M. Drug Delivery, 2017, 24:346.
[110] Zhang Y, Zhai M, Chen Z, Han X, Yu F, Li Z, Xie X, Han C, Yu L, Yang Y, Mei X. Drug Delivery, 2017, 24:1045.
[111] 于杰(Yu J), 叶超(Ye C), 李臣贵(Li C G), 陈蓉(Chen R), 胡育筑(Hu Y Z). 中国药科大学学报(Journal of China Pharmaceutical University), 2011, 42(4):380.
[112] Wang Y, Wu B, Yang C, Liu M, Sum T C, Yong K T. Small, 2016, 12:534.
[113] Luo D, Li N, Carter K A, Lin C, Geng J, Shao S, Huang W C, Qin Y, Atilla-Gokcumen G E, Lovell J F. Small, 2016, 12:3039.
[114] Luo D, Carter K A, Miranda D, Lovell J F. Adv. Sci., 2017, 4:1600106.
[115] Shao S, Do T N, Razi A, Chitgupi U, Geng J, Alsop R J, Dzikovski B G, Rheinstädter M C, Ortega J, Karttunen M, Spernyak J A, Lovell J F. Small, 2017, 13:1602505.
[116] Bégu S, Aubert-Pou Dëssel A, Polexe R, Leitmanova E, Lerner D A, Devoisselle J M, Tichit D. Chem. Mater., 2009, 21:2679.
[117] Wang Q, O'Hare D. Chem. Rev., 2012, 112:4124.
[118] Yan M, Zhang Z, Cui S, Zhang X, Chu W, Lei M, Zeng K, Liao Y, Deng Y, Zhao C. Asian J. Pharm. Sci., 2016, 11:396.
[119] Lee C H, Kankala R K, Kuthati Y, Liu C L. RSC Adv., 2015, 5:42666.
[120] Zhang Y, Wu X, Mi Y, Li H, Hou W. J. Phys. Chem. Solids, 2017, 108:125.
[121] Nogueira E, Gomes A C, Preto A, Cavaco-Paulo A. Colloids Surf. B, 2015, 136:514.
[122] Sugimoto T, Yamazaki N, Hayashi T, Yuba E, Harada A, Kotaka A, Shinde C, Kumei T, Sumida Y, Fukushima M, Munekata Y, Maruyama K, Kono K. Colloids Surf. B, 2017, 155:449.
[123] Luo D, Carter K A, Razi A, Geng J, Shao S, Giraldo D, Sunar U, Ortega J, Lovell J F. Biomaterials, 2015, 75:193.
[124] Østrem R G, Parhamifar L, Pourhassan H, Clergeaud G, Nielsen O L, Kjær A,Hansen A E, Andresen T L. J. Control. Release, 2017, 262:212.
[125] Nasir M Z M, Jackman J A, Cho N J, Ambrosi A, Pumera M. Anal. Chem., 2017, 89:11753.
[126] Liu X, Wu Z, Zhou F, Li D, Chen H. Colloids Surf. B, 2010, 79:452.
[127] Tang Z, Liu X, Luan Y, Liu W, Wu Z, Li D, Chen H. Polym. Chem., 2013, 4:5597.
[128] Liu J, Cai J, Chen H, Zhang S, Kong J. J. Electroanal. Chem., 2016, 781:103.
[129] Chen Z H, Lv Z Y, Wang X, Yang H, Guang Y Q, Sun T L. NPG Asia Mater. DOI:10.1038/am.2017.241.
[1] Liangchun Li, Renlin Zheng, Yi Huang, Rongqin Sun. Self-Sorting Assembly in Multicomponent Self-Assembled Low Molecular Weight Hydrogels [J]. Progress in Chemistry, 2023, 35(2): 274-286.
[2] Meng Wang, He Song, Yewen Li. Three Dimensional Self-Assembled Blue Phase Liquid Crystalline Photonic Crystal [J]. Progress in Chemistry, 2022, 34(8): 1734-1747.
[3] Yizhou Yang, Bingquan Peng, Xiaoling Lei, Haiping Fang. Aromatic Rings in Ion Soultions: Two-Dimensional Crystals of Unconventional Stoichiometries and Ferromagnetism [J]. Progress in Chemistry, 2022, 34(7): 1524-1536.
[4] Yuexiang Zhu, Weiyue Zhao, Chaozhong Li, Shijun Liao. Pt-Based Intermetallic Compounds and Their Applications in Cathodic Oxygen Reduction Reaction of Proton Exchange Membrane Fuel Cell [J]. Progress in Chemistry, 2022, 34(6): 1337-1347.
[5] Hang Yin, Zhi Li, Xiaofeng Guo, Anchao Feng, Liqun Zhang, San Hoa Thang. Selection Principle of RAFT Chain Transfer Agents and Universal RAFT Chain Transfer Agents [J]. Progress in Chemistry, 2022, 34(6): 1298-1307.
[6] Yangyang Liu, Zigang Zhao, Hao Sun, Xianghui Meng, Guangjie Shao, Zhenbo Wang. Post-Treatment Technology Improves Fuel Cell Catalyst Stability [J]. Progress in Chemistry, 2022, 34(4): 973-982.
[7] Hong Li, Xiaodan Shi, Jieling Li. Self-Assembled Peptide Hydrogel for Biomedical Applications [J]. Progress in Chemistry, 2022, 34(3): 568-579.
[8] Xiaoqing Yin, Weihao Chen, Boyuan Deng, Jialu Zhang, Wanqi Liu, Kaiming Peng. The Application and Mechanism of Superwetting Membrane in Demulsification of Oil-in-Water Emulsions [J]. Progress in Chemistry, 2022, 34(3): 580-592.
[9] Yuling Liu, Tengda Hu, Yilian Li, Yang Lin, Borsali Redouane, Yingjie Liao. Fast Self-Assembly Methods of Block Copolymer Thin Films [J]. Progress in Chemistry, 2022, 34(3): 609-615.
[10] Suqian Fu, Ying Wang, Kai Liu, Junhui He. Fabrication and Applications of Micro/Nano-Porous Polymer Films [J]. Progress in Chemistry, 2022, 34(2): 241-258.
[11] Li Geng, Li Jie, Jiang Hongyu, Liang Xiaozhong, Guo Kunpeng. Mechano-Responsive Luminescent Polymers [J]. Progress in Chemistry, 2022, 34(10): 2222-2238.
[12] Yang Linyan, Guo Yupeng, Li Zhengjia, Cen Jie, Yao Nan, Li Xiaonian. Modulation of Surface and Interface Properties of Cobalt-Based Fischer-Tropsch Synthesis Catalyst [J]. Progress in Chemistry, 2022, 34(10): 2254-2266.
[13] Zhao Jing, Wang Ziya, Mo Lixin, Meng Xiangyou, Li Luhai, Peng Zhengchun. Performance Enhancing Mechanism,Implementation and Practical Advantages of Microstructured Flexible Pressure Sensors [J]. Progress in Chemistry, 2022, 34(10): 2202-2221.
[14] Binbin Zhu, Xiaohui Zheng, Guang Yang, Xu Zeng, Wei Qiu, Bin Xu. Mechanical Property Regulation of Graphene Oxide Separation Membranes [J]. Progress in Chemistry, 2021, 33(4): 670-677.
[15] Yu Bai, Shuanjin Wang, Min Xiao, Yuezhong Meng, Chengxin Wang. Phosphoric Acid Based Proton Exchange Membranes for High Temperature Proton Exchange Membrane Fuel Cells [J]. Progress in Chemistry, 2021, 33(3): 426-441.