中文
Announcement
More
Progress in Chemistry DOI: 10.7536/PC171125 Previous Articles   Next Articles

• Review •

Design, Synthesis and Applications of Antimicrobial Peptides and Antimicrobial Peptide-Mimetic Copolymers

Chuncai Zhou, Chuncai Zhou*   

  1. School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No. 51773153, 21274110).
PDF ( 1262 ) Cited
Export

EndNote

Ris

BibTeX

Antibiotics resistance of bacteria has caused serious threats to public health and it is urgent to develop novel antibacterial agents that do not induce drug-resistance. Antimicrobial peptides(AMPs), constituting important parts of the immune system, are cationic short peptides produced by most living creatures such as bacteria, plants, fish, insects, mammal animals and so on. AMPs possess many excellent properties, including broad-spectrum antibacterial efficacy, high selectivity and unique membrane-destruction bactericidal mechanism. Thus, AMPs have become a promising candidate to overcome superbugs. However, over-costing and time-consuming production of natural AMPs limit their large-scale application. Therefore, low-cost and convenient synthesis methods have emerged, such as liquid-phase synthesis, solid-phase synthesis and N-carboxyanhydrides(NCA) ring-opening polymerization. Meanwhile, novel peptide-mimetic antibacterial polymers provide unlimited possibilities for development of peptide-based antibacterial agents and broaden their application fields. In this review, the sources, structure and antibacterial mechanism of AMPs are introduced. The synthesis methods to date of AMPs are also reviewed. Moreover, the development of antimicrobial peptide-mimetic copolymers and application of their assemblies are summarized as well. Finally, the shortcomings and the further development of antimicrobial peptides are discussed, providing advice for development of efficient, low toxicity "new generation antibiotic" in the future.
Contents
1 Introduction
2 Antimicrobial peptides
2.1 Source of antimicrobial peptides
2.2 Structure of antimicrobial peptides
2.3 Antibacterial mechanism of antimicrobial peptides
2.4 Synthesis of antimicrobial peptides
3 Antimicrobial peptide-mimetic copolymers
4 Antimicrobial nanoparticles
5 Conclusion and outlook

CLC Number: 

[1] Singh S B, Young K, Silver L L. Biochem. Pharmacol., 2017, 133:63.
[2] Y?lmaz Ç, Özcengiz G. Biochem. Pharmacol., 2017, 133:43.
[3] Bechinger B, Gorr S U. J. Dent. Res., 2017, 96:254.
[4] Gelband H, Miller P M, Pant S, Gandra S, Levinson J, Barter D, White A, Laxminarayan R. Wound Healing Southern Africa, 2015, 8:30.
[5] Raphael E, Riley L W. Frontiers in Medicine, 2017, 4:183.
[6] Khoshnood S, Heidary M, Mirnejad R, Bahramian A, Sedighi M, Mirzaei H. Biomed. Pharmacother., 2017, 94:982.
[7] Neu H C. Science, 1992, 257:1064.
[8] Spellberg B, Guidos R, Gilbert D, Bradley J, Boucher H W, Scheld W M, Bartlett J G, Edwards J J. Clin. Infect. Dis., 2008, 46:155.
[9] Talbot G H, Bradley J, Edwards J J E, Gilbert D, Scheld M, Bartlett J G. Clin. Infect. Dis., 2006, 42:657.
[10] Boman H G. Cell, 1991, 65:205.
[11] Hancock R E W, Diamond G. Trends Microbiol., 2000, 8:402.
[12] Hancock R E W, Sahl H G. Nat Biotech., 2006, 24:1551.
[13] Chen C, Chen Y, Yang C, Zeng P, Xu H, Pan F, Lu J R. ACS Appl. Mater. Interfaces, 2015, 7:17346.
[14] Reddy K V R, Yedery R D, Aranha C. Int. J. Antimicrob. Agents, 2004, 24:536.
[15] Zasloff M. Nature, 2002, 415:389.
[16] Brogden K A. Nat. Rev. Microbiol., 2005, 3:238.
[17] Delves-Broughton J, Blackburn P, Evans R J, Hugenholtz J. Antonie van Leeuwenhoek, 1996, 69:193.
[18] Jung D, Powers J P, Straus S K, Hancock R E W. Chem. Phys. Lipids, 2008, 154:120.
[19] Liu L, Xu K, Wang H, Jeremy T P K, Fan W, Venkatraman S S, Li L, Yang Y Y. Nat. Nanotechnol., 2009, 4:457.
[20] Zhou C, Wang M, Zou K, Chen J, Zhu Y, Du J. ACS Macro Lett., 2013, 2:1021.
[21] Carrasco L, VÁZquez D, HernÁNdez-Lucas C, Carbonero P, GarcÍA-Olmedo F. Eur. J. Biochem., 1981, 116:185.
[22] Bohlmann H, Broekaert W. Crit. Rev. Plant Sci., 1994, 13:1.
[23] Baroni A, Donnarumma G, Paoletti I, Longanesi-Cattani I, Bifulco K, Tufano M A, Carriero M V. Peptides, 2009, 30:267.
[24] Wang G. Pharmaceuticals, 2013, 6:728.
[25] Cleveland J, Montville T J, Nes I F, Chikindas M L. Int. J. Food Microbiol., 2001, 71:1.
[26] Ahmad V, Khan M S, Jamal Q M S, Alzohairy M A, Al Karaawi M A, Siddiqui M U. Int. J. Antimicrob. Agents., 2017, 49:1.
[27] Benko-Iseppon A M, Lins-Galdino S, Calsa T, Akio-Kido E, Tossi A, Carlos B L, Crovella S. Curr. Protein Pept. Sci., 2010, 11:181.
[28] Guzmán-Rodríguez J J, Ochoa-Zarzosa A, López-Gómez R, López-Meza J E. Biomed. Res. Int., 2015, 11.
[29] Ageitos J M, Sánchez-Pérez A, Calo-Mata P, Villa T G. Biochem. Pharmacol., 2017, 133:117.
[30] Brogden K A, Ackermann M, McCray P B, Tack B F. Int. J. Antimicrob. Agents, 2003, 22:465.
[31] Wang Z, Wang G. Nucleic Acids Res., 2004, 32:D590.
[32] Yount N Y, Bayer A S, Xiong Y Q, Yeaman M R. Pept. Sci., 2006, 84:435.
[33] Jenssen H, Hamill P, Hancock R E W. Clin. Microbiol. Rev., 2006, 19:491.
[34] Li Y, Xiang Q, Zhang Q, Huang Y, Su Z. Peptides, 2012, 37:207.
[35] Hallock K J, Lee D K, Ramamoorthy A. Biophys. J., 2003, 84:3052.
[36] Henzler W K A, Lee D K, Ramamoorthy A. Biochemistry, 2003, 42:6545.
[37] Matsuzaki K, Murase O, Fujii N, Miyajima K. Biochemistry, 1996, 35:11361.
[38] Yang L, Harroun T A, Weiss T M, Ding L, Huang H W. Biophys. J., 2001, 81:1475.
[39] Zhang L, Rozek A, Hancock R E W. J. Biol. Chem., 2001, 276:35714.
[40] Powers J P S, Tan A, Ramamoorthy A, Hancock R E W. Biochemistry, 2005, 44:15504.
[41] Wu M, Maier E, Benz R, Hancock R E W. Biochemistry, 1999, 38:7235.
[42] Nakamura T, Furunaka H, Miyata T, Tokunaga F, Muta T, Iwanaga S, Niwa M, Takao T, Shimonishi Y. J. Biol. Chem., 1988, 263:16709.
[43] Diamond G, Zasloff M, Eck H, Brasseur M, Maloy W L, Bevins C L. Proc. Natl. Acad. Sci. U. S. A., 1991, 88:3952.
[44] Miyata T, Tokunaga F, Yoneya T, Yoshikawa K, Iwanaga S, Niwa M, Takao T, Shimonishi Y. J. Biochem., 1989, 106:663.
[45] Shafer W M, Martin L E, Spitznagel J K. Infect. Immun., 1984, 45:29.
[46] Sasaki Y, Coy D H. Peptides, 1987, 8:119.
[47] Merrifield R B. Adv. Enzymol. Relat. Areas Mol. Biol., 1969, 32:221.
[48] Haynes S R, Hagins S D, Juban M M, Elzer P H, Hammer R P. J. Pept. Res., 2005, 66:333.
[49] Ng-Choi I, Soler M, Cerezo V, Badosa E, Montesinos E, Planas M, Feliu L. Eur. J. Org. Chem., 2012, 4321.
[50] Andreu D, Merrifield R B, Steiner H, Boman H G. Proc. Natl. Acad. Sci. U. S. A., 1983, 80:6475.
[51] Pellois J P, Wang W, Gao X. J. Comb. Chem., 2000, 2:355.
[52] Fields G B, Noble R L. Int. J. Pept. Protein Res., 1990, 35:161.
[53] Wenschuh H, Beyermann M, Haber H, Seydel J K, Krause E, Bienert M, Carpino L A, El-Faham A, Albericio F. J. Org. Chem., 1995, 60:405.
[54] Pantarotto D, Bianco A, Pellarini F, Tossi A, Giangaspero A, Zelezetsky I, Briand J P, Prato M. J. Am. Chem. Soc., 2002, 124:12543.
[55] King D S, Fields C G, Fields G B. Int. J. Pept. Protein Res., 1990, 36:255.
[56] Woodward R B, Schramm C H. J. Am. Chem. Soc., 1947, 69:1551.
[57] Aliferis T, Iatrou H, Hadjichristidis N. Biomacromolecules, 2004, 5:1653.
[58] Zhou C, Qi X, Li P, Chen W N, Mouad L, Chang M W, Leong S S J, Chan-Park M B. Biomacromolecules, 2010, 11:60.
[59] Su X, Zhou X, Tan Z, Zhou C. Biopolymers, 2017, 107:e23041.
[60] Li P, Zhou C, Rayatpisheh S, Ye K, Poon Y F, Hammond P T, Duan H, Chan-Park M B. Adv. Mater., 2012, 24:4130.
[61] Wade D, Boman A, Wåhlin B, Drain C M, Andreu D, Boman H G, Merrifield R B. Proc. Natl. Acad. Sci. U. S. A., 1990, 87:4761.
[62] Shai Y. Pept. Sci., 2002, 66:236.
[63] Oren Z, Ramesh J, Avrahami D, Suryaprakash N, Shai Y, Jelinek R. Eur. J. Biochem., 2002, 269:3869.
[64] Zhou C, Yuan Y, Zhou P, Wang F, Hong Y, Wang N, Xu S, Du J. Biomacromolecules, 2017, 18:4154
[65] Lam S J, O'Brien-Simpson N M, Pantarat N, Sulistio A, Wong E H H, Chen Y Y, Lenzo J C, Holden J A, Blencowe A, Reynolds E C, Qiao G G. Nat. Microbiol., 2016, 1:16162.
[66] Yang X, Hu K, Hu G, Shi D, Jiang Y, Hui L, Zhu R, Xie Y, Yang L. Biomacromolecules, 2014, 15:3267.
[67] Kuroda K, DeGrado W F. J. Am. Chem. Soc., 2005, 127:4128.
[68] Punia A, He E, Lee K, Banerjee P, Yang N L. Chem. Commun., 2014, 50:7071.
[69] Michl T D, Locock K E S, Stevens N E, Hayball J D, Vasilev K, Postma A, Qu Y, Traven A, Haeussler M, Meagher L, Griesser H J. Polym. Chem., 2014, 5:5813.
[70] Choi H, Chakraborty S, Liu R, Gellman S H, Weisshaar J C. ACS Chem. Biol., 2016, 11:113.
[71] Hovakeemian S G, Liu R H, Gellman S H, Heerklotz H. Soft Matter, 2015, 11:6840.
[72] Mowery B P, Lee S E, Kissounko D A, Epand R F, Epand R M, Weisblum B, Stahl S S, Gellman S H. J. Am. Chem. Soc., 2007, 129:15474.
[73] Gabriel G J, Som A, Madkour A E, Eren T, Tew G N. Materials Science and Engineering:R:Reports, 2007, 57:28.
[74] Lienkamp K, Madkour A E, Musante A, Nelson C F, Nüsslein K, Tew G N. J. Am. Chem. Soc., 2008, 130:9836.
[75] Tew G N, Scott R W, Klein M L, DeGrado W F. Acc. Chem. Res., 2010, 43:30.
[76] Ilker M F, Nüsslein K, Tew G N, Coughlin E B. J. Am. Chem. Soc., 2004, 126:15870.
[77] Uppu D S S M, Samaddar S, Hoque J, Konai M M, Krishnamoorthy P, Shome B R, Haldar J. Biomacromolecules, 2016, 17:3094.
[78] Oda Y, Kanaoka S, Sato T, Aoshima S, Kuroda K. Biomacromolecules, 2011, 12:3581.
[79] Takahashi H, Caputo G A, Vemparala S, Kuroda K. Bioconjugate Chem., 2017, 28:1340.
[80] Chakraborty S, Liu R H, Hayouka Z, Chen X Y, Ehrhardt J, Lu Q, Burke E, Yang Y Q, Weisblum B, Wong G C L, Masters K S, Gellman S H. J. Am. Chem. Soc., 2014, 136:14530.
[81] Zhang S, Holmes T, Lockshin C, Rich A. Proc. Natl. Acad. Sci. U. S. A., 1993, 90:3334.
[82] Gao J, Wang M, Wang F, Du J. Biomacromolecules, 2016, 17:2080.
[83] Zhou C, Zhou X, Su X. RSC Adv., 2017, 7:39718.
[1] Liangchun Li, Renlin Zheng, Yi Huang, Rongqin Sun. Self-Sorting Assembly in Multicomponent Self-Assembled Low Molecular Weight Hydrogels [J]. Progress in Chemistry, 2023, 35(2): 274-286.
[2] Meng Wang, He Song, Yewen Li. Three Dimensional Self-Assembled Blue Phase Liquid Crystalline Photonic Crystal [J]. Progress in Chemistry, 2022, 34(8): 1734-1747.
[3] Hang Yin, Zhi Li, Xiaofeng Guo, Anchao Feng, Liqun Zhang, San Hoa Thang. Selection Principle of RAFT Chain Transfer Agents and Universal RAFT Chain Transfer Agents [J]. Progress in Chemistry, 2022, 34(6): 1298-1307.
[4] Yuling Liu, Tengda Hu, Yilian Li, Yang Lin, Borsali Redouane, Yingjie Liao. Fast Self-Assembly Methods of Block Copolymer Thin Films [J]. Progress in Chemistry, 2022, 34(3): 609-615.
[5] Hong Li, Xiaodan Shi, Jieling Li. Self-Assembled Peptide Hydrogel for Biomedical Applications [J]. Progress in Chemistry, 2022, 34(3): 568-579.
[6] Chenyang Qi, Jing Tu. Antibiotic-Free Nanomaterial-Based Antibacterial Agents:Current Status, Challenges and Perspectives [J]. Progress in Chemistry, 2022, 34(11): 2540-2560.
[7] Chuxuan Yan, Qinglin Li, Zhengqi Gong, Yingzhi Chen, Luning Wang. Organic Semiconductor Nanostructured Photocatalysts [J]. Progress in Chemistry, 2021, 33(11): 1917-1934.
[8] Yena Feng, Shuhe Liu, Shubo Zhang, Tong Xue, Honglin Zhuang, Anchao Feng. Preparation of SiO2/Polymer Nanocomposites Based on Polymerization-Induced Self-Assembly [J]. Progress in Chemistry, 2021, 33(11): 1953-1963.
[9] Zixuan Wang, Yuefei Wang, Wei Qi, Rongxin Su, Zhimin He. Design, Self-Assembly and Application of DNA-Peptide Hybrid Molecules [J]. Progress in Chemistry, 2020, 32(6): 687-697.
[10] Kangkang Zhi, Xin Yang. Natural Product Gels and Their Gelators [J]. Progress in Chemistry, 2019, 31(9): 1314-1328.
[11] Daiwu Lin, Qiguo Xing, Yuefei Wang, Wei Qi, Rongxin Su, Zhimin He. Supramolecular Chiral Self-Assembly of Peptides and Its Applications [J]. Progress in Chemistry, 2019, 31(12): 1623-1636.
[12] Yao-Hua Liu, Yu Liu. Photo-Controlled Supramolecular Assemblies Based on Azo Group [J]. Progress in Chemistry, 2019, 31(11): 1528-1539.
[13] Zi-Yue Xu, Yun-Chang Zhang, Jia-Le Lin, Hui Wang, Dan-Wei Zhang, Zhan-Ting Li. Supramolecular Self-Assembly Applied for the Design of Drug Delivery Systems [J]. Progress in Chemistry, 2019, 31(11): 1540-1549.
[14] Jiatian Guo, Yuchao Lu, Chen Bi, Jiating Fan, Guohe Xu, Jingjun Ma. Stimuli-Responsive Peptides Self-Assembly and Its Application [J]. Progress in Chemistry, 2019, 31(1): 83-93.
[15] Liu Xu, Chen Qian, Chenqi Zhu, Zhipeng Chen, Rui Chen*. The Study of Peptides Nanomedicine for Drug Delivery Systems [J]. Progress in Chemistry, 2018, 30(9): 1341-1348.