中文
Announcement
More
Progress in Chemistry 2018, Vol. 30 Issue (7): 932-946 DOI: 10.7536/PC171114 Previous Articles   Next Articles

Special Issue: 电化学有机合成

• Review •

Synthesis of Two-Dimensional MXene and Their Applications in Electrochemical Energy Storage

Kai Han, Nuo Li, Hongqi Ye, Kai Han*   

  1. School of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No. 21706292) and the Natural Science Foundation of Hunan Province of China(No. 2017JJ3376).
PDF ( 2353 ) Cited
Export

EndNote

Ris

BibTeX

The removal of the "A" group layer from the MAX conductive ceramics(a family of ternary transition metal carbides or nitrides) phases results in two-dimensional materials which are named as MXene to denote the loss of the A element and emphasize their structure similarities with graphene. MXene is an emerging functional material in the field of two-dimensional crystal materials, which has excellent electric conductivity, low resistance of ion, strong mechanical strength, highly hydrophilic surface and 2D layer structure. As a novel kind of functional material, the methodology for preparing MXene and the potential applications have triggered tremendous interests. Until now, only 20 MXenes have been successfully synthesized and their composite materials have been demonstrated superior performance when applied in electrochemical energy storage, including secondary battery(Li-ion batteries and non-Li-ion batteries, i.e. Na+, K+, Mg2+, Ca2+ and Al3+) and electrochemical supercapacitor. In this review, the recent preparation methods and properties of MXene, especially the electrical characteristics, are summarized and compared. Then the applications of MXene materials in electrochemical energy storage are discussed in detail. The challenges and future perspective in the application of MXene materials are lastly outlined.
Contents
1 Introduction
2 Synthesis of MXene materials
2.1 HF etching
2.2 Fluoride-HCl mixture etching
2.3 Other approach
2.4 Synthesis of few/single layer MXene
3 Properties of MXene
3.1 Electronic properties
3.2 Electromagnetic properties
3.3 Mechanical properties
4 The applications in electrochemical energy storage of MXene materials
4.1 Lithium ion batteries
4.2 Non-lithium ion batteries
4.3 Lithium sulfur batteries
4.4 Supercapacitors
5 Conclusion and perspective

CLC Number: 

[1] Singh V, Joung D, Zhai L, Das S, Khondaker S I, Seal S. Prog. Mater. Sci., 2011, 56(8):1178.
[2] Kuila T, Bose S, Mishra A K, Khanra P, Kim N H, Lee J H. Prog. Mater. Sci., 2012, 57(7):1061.
[3] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S A, Firsov A A. Science, 2004, 306:666.
[4] Novoselov K S, Geim A K. Nat. Mater., 2007, 6(3):183.
[5] Naguib M, Kurtoglu M, Presser V, Lu J, Niu J, Heon M, Hultman L, Gogotsi Y, Barsoum M W. Adv. Mater., 2011, 23(37):4248.
[6] Naguib M, Mochalin V N, Barsoum M W, Gogotsi Y. Adv. Mater., 2014, 26(7):992.
[7] Barsoum M W. MAX Phases:Properties of Machinable Ternary Carbides and Nitrides. John Wiley & Sons, 2013, 1-10.
[8] Barsoum M W. Prog. Solid St. Chem., 2000, 28:201.
[9] Anasori B, Lukatskaya M R, Gogotsi Y. Nat. Rev. Mater., 2017, 2(2):16098.
[10] Naguib M, Mashtalir O, Carle J, Presser V, Lu J, Hultman L, Gogotsi Y, Barsoum M W. ACS Nano, 2012, 6(2):1322.
[11] Naguib M, Halim J, Lu J, Cook K M, Hultman L, Gogotsi Y, Barsoum M W. J. Am. Chem. Soc., 2013, 135(43):15966.
[12] Chang F Y, Li C S, Yang J, Tang H, Xue M Q. Mater. Lett., 2013, 109:295.
[13] Ghidiu M, Naguib M, Shi C, Mashtalir O, Pan L M, Zhang B, Yang J, Gogotsi Y, Billinge S J L, Barsoum M W. Chem. Commun., 2014, 50(67):9517.
[14] Meshkian R, Näslund L, Halim J, Lu J, Barsoum M W, Rosen J. Scr. Mater., 2015, 108:147.
[15] Sun D D, Hu Q K, Chen J F, Zhou A G. Key Eng. Mater., 2014, 602:527.
[16] Khazaei M, Arai M, Sasaki T, Estili M, Sakka Y. Adv. Mater., 2014, 16(17):7841.
[17] Zhou J, Zha X, Chen F Y, Ye Q, Eklund P, Du S, Huang Q. Angew. Chem.Int.Ed., 2016, 128(16):5092.
[18] Zhou Y C, He L F, Lin Z J, Wang J Y. J. Eur. Ceram. Soc., 2013, 33(15/16):2831.
[19] Mashtalir O, Naguib M, Dyatkin B, Gogotsi Y, Barsoum M W. Mater. Chem. Phys., 2013, 139(1):147.
[20] Anasori B, Xie Y, Beidaghi M, Lu J, Hosler B C, Hultman L, Kent P R C, Gogotsi Y, Barsoum M W. ACS Nano, 2015, 9(10):9507.
[21] Ghidiu M, Lukatskaya M R, Zhao M, Gogotsi Y, Barsoum M W. Nature, 2014, 516(7529):78.
[22] Liu F, Zhou A, Chen J, Jia J, Zhou W, Wang L, Hu Q. Appl. Surf. Sci., 2017, 416:781.
[23] Wang X, Garnero C, Rochard G, Magne D, Morisset S, Hurand S, Mauchamp V. J. Mater. Chem. A, 2017, 5(41):22012.
[24] Halim J, Lukatskaya M R, Cook K M, Lu J, Smith C R, Näslund L, May S J, Hultman L, Gogotsi Y, Eklund P, Barsoum M W. Chem. Mater., 2014, 26(7):2374.
[25] Urbankowski P, Anasori B, Makaryan T, Er D, Kota S, Walsh P L, Gogotsi Y. Nanoscale, 2016, 8(22):11385.
[26] Mashtalir O, Naguib M, Mochalin V N, Dall'Agnese Y, Heon M, Barsoum M W, Gogotsi Y. Nat. Commun., 2013, 4:1716.
[27] Naguib M, Unocic R R, Armstrong B L, Nanda J. Dalton Trans., 2015, 44(20):9353.
[28] Luo J, Fang C, Jin C, Yuan H, Sheng O, Fang R, Zhang W, Li W, Tao X. J. Mater. Chem. A, 2018, 6:7794.
[29] Khazaei M, Arai M, Sasaki T, Chung C, Venkataramanan N S, Estili M, Sakka Y, Kawazoe Y. Adv. Funct. Mater., 2013, 23(17):2185.
[30] Kurtoglu M, Naguib M, Gogotsi Y, Barsoum M W. MRS Commun., 2012, 2(4):133.
[31] Enyashin A N, Ivanovskii A L. J. Phys. Chem. C, 2013, 117(26):13637.
[32] Tang Q, Zhou Z. Prog. Mater. Sci., 2013, 58(8):1244.
[33] Wang S, Li J X, Du Y L, Cui C. Comp. Mater. Sci., 2014, 83:290.
[34] Berdiyorov G R. AIP Adv., 2016, 117(5):055105.
[35] Osti N C, Naguib M, Ostadhossein A, Xie Y, Kent P R, Dyatkin B, Mamontov E. ACS Appl. Mater. Interfaces, 2016, 8(14):8859.
[36] Xie Y, Naguib M, Mochalin V N, Barsoum M W, Gogotsi Y, Yu X, Nam K, Yang X, Kolesnikov A I, Kent P R C. J. Am Chem. Soc., 2014, 136(17):6385.
[37] Zhao S, Kang W, Xue J. J. Mater. Chem. C, 2015, 3(4):879.
[38] Yang E, Ji H, Kim J, Kim H, Jung Y. Phys. Chem. Chem. Phys., 2015, 17(7):5000.
[39] Er D, Li J, Naguib M, Gogotsi Y, Shenoy V B. ACS Appl. Mater. Inter., 2014, 6(14):11173.
[40] Zhao S J, Kang W, Xue J M. Appl. Phys. Lett., 2014, 104(13):133106.
[41] Shahzad F, Alhabeb M, Hatter C B, Anasori B, Hong S, Koo C M, Gogotsi Y. Science, 2016, 353(6304):1137.
[42] Guo Z, Zhou J, Si C, Sun Z. Phys. Chem. Chem. Phys., 2015, 17(23):15348.
[43] Lee Y, Cho S B, Chung Y. ACS Appl. Mater. Inter., 2014, 6(16):14724.
[44] McDowell M T, Lee S W, Nix W D, Cui Y. Adv. Mater., 2013, 25:4966.
[45] Park M, Kim M G, Joo J, Kim K, Kim J, Ahn S, Cui Y, Cho J. Nano Lett., 2009, 9(11):3844.
[46] Chan C K, Peng H, Liu G, McIlwrath K, Zhang X F, Huggins R A, Cui Y. Nat. Nanotechnol., 2008, 3(1):31.
[47] Liang Y, Li Y, Wang H, Zhou J, Wang J, Regier T, Dai H. Nat. Mater., 2011, 10(10):780.
[48] Wang D, Choi D, Li J, Yang Z, Nie Z, Kou R, Aksay I A. ACS Nano, 2009, 3(4):907.
[49] Hu J, Xu B, Ouyang C, Yang S A, Yao Y. J. Phys. Chem. C, 2014, 118(42):24274.
[50] Wang H, Wu Y, Yuan X, Zeng G, Zhou J, Wang X, Chew J. Adv. Mater., 2017, 1704561.
[51] Xie X, Kretschmer K, Anasori B, Sun B, Wang G, Gogotsi Y. ACS Appl. Nano Mater., 2018, 1:505.
[52] Yan Y, Matthew T, McDowell I R, Hui W, Nian L, Liangbing H, William D, Yi C. Nano Lett., 2011, 11(7):2949.
[53] Yang Z, Choi D, Kerisit S, Rosso K M, Wang D, Zhang J, Graff G, Liu J. J. Power Sources, 2009, 192(2):588.
[54] Naguib M, Come J, Dyatkin B, Presser V, Taberna P, Simon P, Barsoum M W, Gogotsi Y. Electrochem. Commun., 2012, 16(1):61.
[55] Lin Z, Sun D, Huang Q, Yang J, Barsoum M W, Yan X. J. Mater. Chem. A, 2015, 3(27):14096.
[56] Ren C E, Zhao M, Makaryan T, Halim J, Boota M, Kota S, Anasori B, Barsoum M W, Gogotsi Y. ChemElectroChem, 2016, 3(5):689.
[57] Chen C, Boota M, Xie X, Zhao M, Anasori B, Ren C E, Miao L, Jiang J J, Gogotsi Y. J. Mater. Chem. A, 2017, 5(11):5260.
[58] Zou G, Zhang Z, Guo J, Liu B, Zhang Q, Fernandez C, Peng Q. ACS Appl. Mater. Inter., 2016, 8(34):22280.
[59] Luo J, Tao X, Zhang J, Xia Y, Huang H, Zhang L, Gan Y, Liang C, Zhang W. ACS Nano, 2016, 10(2):2491.
[60] Ahmed B, Anjum D H, Gogotsi Y, Alshareef H N. Nano Energy, 2017, 34:249.
[61] Zhang H, Dong H, Zhang X, Xu Y, Fransaer J. Electrochim. Acta, 2016, 202:24.
[62] Zhu H, Jia Z, Chen Y, Weadock N, Wan J, Vaaland O, Han X, Li T, Hu L. Nano Lett., 2013, 13(7):3093.
[63] Share K, Cohn A P, Carter R, Rogers B, Pint C L. ACS Nano, 2016, 10(10):9738.
[64] Arthur T S, Zhang R, Ling C, Glans P A, Fan X, Guo J, Mizuno F. ACS Appl. Mater. Interfaces, 2014, 6(10):7004.
[65] Lin M C, Gong M, Lu B, Wu Y, Wang D Y, Guan M, Angell M, Chen C X, Yang J, Hwang B J, Dai H. Nature, 2015, 520(7547):324.
[66] Xie Y, Dall Agnese Y, Naguib M, Gogotsi Y, Barsoum M W, Zhuang H L, Kent P R C. ACS Nano, 2014, 8(9):9606.
[67] Lian P, Dong Y, Wu Z S, Zheng S, Wang X, Wang S, Sun C L, Qin J Q, Shi X Y, Bao X H. Nano Energy, 2017, 40:1.
[68] Dong Y, Wu Z, Zheng S, Wang X, Qin J, Wang S, Shi X, Bao X. ACS Nano, 2017, 11(5):4792.
[69] Wu Y, Nie P, Jiang J, Ding B, Dou H, Zhang X. ChemElectroChem, 2017, 4(6):1560.
[70] Liang X, Garsuch A, Nazar L F. Angew. Chem. Int. Ed., 2015, 54(13):3907.
[71] Bao W, Su D, Zhang W, Guo X, Wang G. Adv. Funct. Mater., 2016, 26(47):8746.
[72] Song J, Su D, Xie X, Guo X, Bao W. ACS Appl. Mater. Inter., 2016, 8(43):29427.
[73] Biswas S, Drzal L T. Chem. Mater., 2010, 22(20):5667.
[74] Zhang L L, Zhao X S. Chem. Soc. Rev., 2009, 38(9):2520.
[75] Wang Y, Shi Z, Huang Y, Ma Y, Wang C, Chen M, Chen Y. J. Phys. Chem. C, 2009, 113(30):13103.
[76] Zhang K, Zhang L L, Zhao X S, Wu J. Chem. Mater., 2010, 22(4):1392.
[77] Gao Y P, Wang L B, Li Z Y, Zhang Y F, Xing B L, Zhang C X, Zhou A G. J. Adv. Ceram., 2015, 4(2):130.
[78] Dall'Agnese Y, Lukatskaya M R, Cook K M, Taberna P, Gogotsi Y, Simon P. Electrochem. Commun., 2014, 48:118.
[79] Wang F, Cao M, Qin Y, Zhu J, Wang L, Tang Y. RSC Adv., 2016, 6(92):88934.
[80] Lukatskaya M R, Mashtalir O, Ren C E, Dall'Agnese Y, Rozier P, Taberna P L, Naguib M, Simon P, Barsoum M W, Gogotsi Y. Science, 2013, 341(6153):1502.
[81] Hu M M, Li Z J, Zhang H, Hu T, Zhang C, Wu Z, Wang X H. Chem. Commun., 2015, 51(70):13531.
[82] Zhao M, Ren C E, Ling Z, Lukatskaya M R, Zhang C, van Aken K L, Barsoum M W, Gogotsi Y. Adv. Mater., 2015, 27(2):339.
[83] Ling Z, Ren C E, Zhao M, Yang J, Giammarco J M, Qiu J, Barsoum M W, Gogotsi Y. Proc. Natl. Acad. Sci., 2014, 111(47):16676.
[84] Yan P, Zhang R, Jia J, Wu C, Zhou A, Xu J, Zhang X. J. Power Sources, 2015, 284:38.
[85] Luo J, Zhang W, Yuan H, Jin C, Zhang L, Huang H, Liang C,Xia Y, Zhang J, Gan Y P, Tao X. ACS Nano, 2017, 11(3):2459.
[86] Dall'Agnese Y, Taberna P, Gogotsi Y, Simon P. J. Phys. Chem. Lett., 2015, 6(12):2305.
[87] Wang X, Kajiyama S, Iinuma H, Hosono E, Oro S, Moriguchi I, Okubo M, Yamada A. Nat. Commun., 2015, 6:6544.
[1] Yanan Han, Jiahui Hong, Anrui Zhang, Ruoxuan Guo, Kexin Lin, Yuejie Ai. A Review on MXene and Its Applications in Environmental Remediation [J]. Progress in Chemistry, 2022, 34(5): 1229-1244.
[2] Keke Guan, Wen Lei, Zhaoming Tong, Haipeng Liu, Haijun Zhang. Synthesis, Structure Regulating and the Applications in Electrochemical Energy Storage of MXenes [J]. Progress in Chemistry, 2022, 34(3): 665-682.
[3] Yimin Sun, Houshen Li, Zhenyu Chen, Dong Wang, Zhanpeng Wang, Fei Xiao. The Application of MXene in Electrochemical Sensor [J]. Progress in Chemistry, 2022, 34(2): 259-271.
[4] Yuanju Jing, Chun Kang, Yanxin Lin, Jie Gao, Xinbo Wang. MXene-Based Single-Atom Catalysts: Synthesis and Electrochemical Catalysis [J]. Progress in Chemistry, 2022, 34(11): 2373-2385.
[5] Kang Chun, Lin Yanxin, Jing Yuanju, Wang Xinbo. Preparation and Environmental Applications of 2D Nanomaterial MXenes [J]. Progress in Chemistry, 2022, 34(10): 2239-2253.
[6] Song Jiang, Jiapei Wang, Hui Zhu, Qin Zhang, Ye Cong, Xuanke Li. Synthesis and Applications of Two-Dimensional V2C MXene [J]. Progress in Chemistry, 2021, 33(5): 740-751.
[7] Huifeng Xu, Yongqiang Dong, Xi Zhu, Lishuang Yu. Novel Two-Dimensional MXene for Biomedical Applications [J]. Progress in Chemistry, 2021, 33(5): 752-766.
[8] Jixiu Zhu, Qiaofen Chen, Titong Ni, Aimin Chen, Jianmin Wu. Application for Exhaled Gas Sensor Based on Novel Mxenes Materials* [J]. Progress in Chemistry, 2021, 33(2): 232-242.
[9] Jixiu Zhu, Qiaofen Chen, Titong Ni, Aimin Chen, Jianmin Wu. Application for Exhaled Gas Sensor Based on Novel Mxenes Materials* [J]. Progress in Chemistry, 2021, 33(2): 232-242.
[10] Yousen Xu, Zhen Zhang, Biao Tang, Guofu Zhou. Ti3C2-MXene for Interfacial Solar Steam Generation [J]. Progress in Chemistry, 2021, 33(11): 2033-2055.
[11] Shengnan Zhang, Dongmei Han, Shan Ren, Min Xiao, Shuanjin Wang, Yuezhong Meng. Immobilization Strategies of Organic Electrode Materials [J]. Progress in Chemistry, 2020, 32(1): 103-118.
[12] Jiahui Li, Jing Zhang, Binglong Rui, Li Lin, Limin Chang, Ping Nie. Application of MXene and Its Composites in Sodium/Potassium Ion Batteries [J]. Progress in Chemistry, 2019, 31(9): 1283-1292.
[13] Huiya Wang, Limin Zhao, Fang Zhang, Dannong He. High-Performance Lithium-Ion Secondary Battery Membranes [J]. Progress in Chemistry, 2019, 31(9): 1251-1262.
[14] Wenjun Zhao, Jiangzhou Qin, Zhifan Yin, Xia Hu, Baojun Liu. 2D MXenes for Photocatalysis* [J]. Progress in Chemistry, 2019, 31(12): 1729-1736.
[15] Li Jiaoyang, Wang Li, He Xiangming. Phosphorus-Based Composite Anode Materials for Secondary Batteries [J]. Progress in Chemistry, 2016, 28(2/3): 193-203.